Probabilistic Programming with Vectorized Programmable
Inference

MCCOY R. BECKER?", Massachusetts Institute of Technology, USA
MATHIEU HUOT", Massachusetts Institute of Technology, USA
GEORGE MATHEQOS, Massachusetts Institute of Technology, USA
XIAOYAN WANG, Massachusetts Institute of Technology, USA
KAREN CHUNG, Massachusetts Institute of Technology, USA
COLIN SMITH, Massachusetts Institute of Technology, USA

SAM RITCHIE, Massachusetts Institute of Technology, USA

RIF A. SAUROUS, Google, USA

ALEXANDER K. LEW, Yale University, USA

MARTIN C. RINARD, Massachusetts Institute of Technology, USA
VIKASH K. MANSINGHKA, Massachusetts Institute of Technology, USA

We present GenJAX, a new language and compiler for vectorized programmable probabilistic inference. GenJAX
integrates the vectorizing map (vmap) operation from array programming frameworks such as JAX into the
programmable inference paradigm, enabling compositional vectorization of features such as probabilistic
program traces, stochastic branching (for expressing mixture models), and programmable inference interfaces
for writing custom probabilistic inference algorithms. We formalize vectorization as a source-to-source
program transformation on a core calculus for probabilistic programming (Aggn), and prove that it correctly
vectorizes both modeling and inference operations. We have implemented our approach in the GenJAX
language and compiler, and have empirically evaluated this implementation on several benchmarks and
case studies. Our results show that our implementation supports a wide and expressive set of programmable
inference patterns and delivers performance comparable to hand-optimized JAX code.

CCS Concepts: » Theory of computation — Probabilistic computation; - Computing methodologies —
Machine learning algorithms; Massively parallel algorithms; « Software and its engineering — Compilers.

Additional Key Words and Phrases: probabilistic programming, vectorization, programmable inference

ACM Reference Format:
McCoy R. Becker, Mathieu Huot, George Matheos, Xiaoyan Wang, Karen Chung, Colin Smith, Sam Ritchie, Rif
A. Saurous, Alexander K. Lew, Martin C. Rinard, and Vikash K. Mansinghka. 2026. Probabilistic Programming

“Equal contribution.

Authors’ Contact Information: McCoy R. Becker, Massachusetts Institute of Technology, Cambridge, USA, mccoyb@mit.edu;
Mathieu Huot, Massachusetts Institute of Technology, Cambridge, USA, mhuot@mit.edu; George Matheos, Massachusetts
Institute of Technology, Cambridge, USA, gmatheos@mit.edu; Xiaoyan Wang, Massachusetts Institute of Technology,
Cambridge, USA, xyz@mit.edu; Karen Chung, Massachusetts Institute of Technology, Cambridge, USA, seoyeon@mit.edu;
Colin Smith, Massachusetts Institute of Technology, Cambridge, USA, colin.smith@gmail.com; Sam Ritchie, Massachusetts
Institute of Technology, Cambridge, USA, sam@perceptual.ai; Rif A. Saurous, Google, San Francisco, USA, rif@google.com;
Alexander K. Lew, Yale University, New Haven, USA, alexander.lew@yale.edu; Martin C. Rinard, Massachusetts Institute of
Technology, Cambridge, USA, rinard@mit.edu; Vikash K. Mansinghka, Massachusetts Institute of Technology, Cambridge,
USA, vkm@mit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART87

https://doi.org/lo.l 145/3776729

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://orcid.org/0009-0000-1930-8150
https://orcid.org/0000-0002-5294-9088
https://orcid.org/0009-0006-5293-9521
https://orcid.org/0000-0001-7058-4679
https://orcid.org/0009-0008-9993-7675
https://orcid.org/0009-0002-1473-9191
https://orcid.org/0000-0002-0545-6360
https://orcid.org/0000-0002-2877-6957
https://orcid.org/0000-0002-9262-4392
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0003-2507-0833
https://github.com/probcomp/genjax
https://github.com/probcomp/genjax
https://orcid.org/0009-0000-1930-8150
https://orcid.org/0000-0002-5294-9088
https://orcid.org/0009-0006-5293-9521
https://orcid.org/0000-0001-7058-4679
https://orcid.org/0009-0008-9993-7675
https://orcid.org/0009-0002-1473-9191
https://orcid.org/0000-0002-0545-6360
https://orcid.org/0000-0002-2877-6957
https://orcid.org/0000-0002-9262-4392
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0003-2507-0833
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776729

87:2 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

with Vectorized Programmable Inference. Proc. ACM Program. Lang. 10, POPL, Article 87 (January 2026),
32 pages. https://doi.org/10.1145/3776729

1 Introduction

In recent years, probabilistic programming has demonstrated remarkable effectiveness in a range
of application domains, including 3D perception and scene understanding [35, 90], probabilistic
robotics [16], automated data cleaning and analysis [41, 49], particle physics [5], time series structure
discovery [72, 74], test-time control of large language models [57, 58], and cognitive modeling
of theory of mind [3, 4, 15, 87-89]. All of these applications require sophisticated probabilistic
reasoning over complex, structured data and rely on probabilistic programming languages (PPLs)
with programmable inference (7, 8, 19, 51, 61, 79]—the ability to customize probabilistic inference
algorithms through proposals, kernels, and variational families—to improve the quality of posterior
approximation. But fully realizing the benefits that probabilistic programming can deliver often
requires substantial computational resources, as probabilistic inference scales by increasing the
number of likelihood evaluations, sequential Monte Carlo particles, or Markov chain Monte Carlo
chains.

We present GenJAX, a new language and compiler for vectorized programmable probabilis-
tic inference. GenJAX integrates the vectorizing map (vmap) operation from array programming
frameworks such as JAX [26] into the context of probabilistic programming with programmable
inference, enabling the compositional vectorization of features such as probabilistic program traces,
stochastic branching (for expressing mixture models), and programmable inference interfaces. This
vectorization enables the implementation of compute-intensive probabilistic programming and
probabilistic inference operations on modern GPUs, making it possible to deploy the substantial
computational resources that GPUs provide to accelerate large-scale probabilistic inference.

Design Considerations. GenJAX is designed around the interaction between vmap and several
probabilistic programming features that support the implementation of sophisticated models and
inference algorithms:

p

trace ~ P
[{"a": f32[1, "b": f32[1}]

vmap of simulate of

vmap of model

trace ~ vmap{P} p 1-p
[{"a": f32[N], "b": f32[N1}]

\

vmap in Modeling and Inference Vectorized Traces Stochastic Branching
Vectorization can apply to Traces are automatically Vectorization supports stochastic
models and inference interfaces structs-of-arrays branching on random values

Fig. 1. Computational patterns in vectorizable probabilistic programs. Left: Within models, vectorization can
be used to parallelize conditionally independent computations. Within inference, vectorization can be used to
simulate multiple particles in parallel. vmap should be applicable in both settings. Center: Traces are records
used to represent samples from probabilistic programs. Both vectorized models and vectorized inference
algorithms are designed to work with vectorized (struct-of-array) traces. Right: Probabilistic programs can
branch on random values, and vmap of probabilistic programs should preserve this capability.

e Compositional vectorization. Our target class of probabilistic programs features multiple
vectorizable computational patterns. Examples include computing likelihoods simultaneously on

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.1145/3776729

Probabilistic Programming with Vectorized Programmable Inference 87:3

vmap
Generative model code Generative model code
GenJAX Features
inference inference Modeling & inference Performance
interfaces interfaces
Stochastic branching §2,4 Struct-of-array traces §2,4

Programmable SMC §5.2 GPU acceleration §4
———> . .
Inference code vmap Inference code Programmable MCMC §5.2 Efficient abstractions §4

Inference on vectorized models can be implemented
by vectorizing inference (Cor. 3.4).

Fig. 2. The design and implementation of GenJAX. Left: GenJAX extends vmap to apply to both generative
models and inference algorithms. Our system implements inference on a vectorized model by vectorizing
inference applied to the model, which is justified by Cor. 3.4. Right: Survey of features in our language and
compiler: usage of these features illustrated in §2 and §5.2, implementation discussed in §4.

many pieces of data (as part of modeling) and evolving collections of particles (sequential Monte
Carlo [20, 23, 30, 53]) or chains (Markov chain Monte Carlo [17, 29, 36, 38, 67, 81]) (as part of
inference). Our integration of vmap must therefore support vectorization of both modeling and
inference code (Fig. 1, left).

e Vectorization of probabilistic program traces. In many systems with programmable inference,
traces [8, 19, 50, 60] are a key datatype: structured record objects used to represent samples. They
are a data lingua franca for Monte Carlo and variational inference: traces allow the order of
random variables in proposals or variational guide programs to be decoupled from the order of
random variables in model programs [84]. Under vectorization by vmap, they support an efficient
vectorized representation (struct-of-array, not array-of-struct) [70] (Fig. 1, center).

e Vectorized stochastic branching. Probabilistic mixture models [21], regime-switching dy-
namics models [25, 47, 56, 64], and adaptive inference algorithms [12, 13] all require stochastic
branching using random values. GenJAX supports stochastic branching while maintaining vec-
torization (Fig. 1, right).

Fig. 2 presents an overview of our design and implementation.

Contributions. This paper makes the following contributions.

(1) GenJAX: high-performance compiler (§4). GenJAX is an open-source compiler that extends
JAX and vmap to support programmable probabilistic inference. Probabilistic programs in Gen-
JAX can be systematically transformed to take advantage of opportunities for vectorization
in both modeling and inference. Our compiler also eliminates the overhead present in many
libraries for programmable inference: we implement simulation and density interfaces using
lightweight effect handlers, and exploit JAX’s support for program tracing [80] to partially
evaluate inference logic away at compile time, leaving only optimized array operations. Our
design maintains full compatibility with JAX’s underlying ecosystem for automatic differen-
tiation (supporting algorithms like programmable variational inference [7, 9, 46, 48, 71]) and
CPU/GPU/TPU compilation.

(2) Formal model: interaction between vmap and programmable inference features (§3). We
develop a formal model characterizing how vmap interacts with probabilistic program traces and
programmable inference interfaces. We introduce Agen, a calculus for probabilistic programming
and programmable inference, on top of a core probabilistic array language for stochastic parallel
computations. We define vmap as a program transformation, prove its correctness, and show

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:4 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

how it interacts with programmable inference interfaces to support vectorization of probabilistic
computations and traces.

(3) Empirical evaluation (§5). We evaluate our design and implementation through a series of
benchmarks and case studies:

e Performance comparison: We evaluate the performance characteristics of our design and
implementation. GenJAX achieves near-handcoded JAX performance, and can outperform
existing vectorized and high-performance PPLs and array programming frameworks (JAX [26],
PyTorch [68], Pyro [8], NumPyro [69], and Gen [19]).

¢ High-dimensional vectorized inference: We explore the performance vs. expressivity
tradeoffs of our design by studying high-dimensional inference problems, including approxi-
mate Game of Life [28] inversion (find the previous 512 x 512 board state which leads to the
observed state) and sequential 2D robot localization with simulated LIDAR measurements. In
both case studies, we use GenJAX to develop sophisticated vectorized inference algorithms,
including vectorized Gibbs sampling and sequential Monte Carlo with vectorized proposals.
Our final GenJAX programs exhibit high approximation accuracy, and run in milliseconds on
consumer-grade GPUs.

Our results demonstrate that vectorization and programmable inference abstractions can be unified
through principled language and compiler design. Our system enables practitioners to write
sophisticated probabilistic programs that compile to high-performance GPU code.

2 Overview

To introduce our language, consider the task of polynomial regression: given a dataset of pairs
(xi,y;) € R?, we wish to infer a polynomial relating x and y. In the following sections, we illustrate
how to solve this problem using generative functions and programmable inference in GenJAX.

2.1 Vectorizing Generative Functions with vmap

Fig. 3 depicts a generative model for quadratic regression. The ultimate goal is to, given a noisy
dataset (x;, yi)1<i<n, infer a quadratic function that plausibly governs the relationship between x
and y. Our model for this task is defined by composing generative functions, each defined as a @gen-
decorated Python function. The polynomial generative function describes a prior distribution on the
coefficients (a, b, ¢) of the underlying quadratic function. Fach coefficient is drawn from a standard
normal distribution. A key feature of GenJAX (shared by many languages with programmable
inference [8, 19, 32, 79, 86]) is that each random choice is assigned a string-valued name, using the
syntax dist @ "name". The polynomial generative function then returns the coefficients as a tuple.
Next, the point generative function models how an individual datapoint y is generated, based on
particular quadratic coefficients (a, b, ¢) and the corresponding input datapoint x. It computes the
quadratic function’s value at x, then adds a small amount of Gaussian noise. Finally, to model an
entire dataset of points, npoint_curve calls polynomial to generate coefficients, and maps the point
generative function over an input vector xs of x values, generating a vector of noisy points. This
is our first use of vmap (Fig. 3, L22): we use it to generate multiple y values in parallel, exploiting
the fact that the datapoints are generated conditionally independently of one another, given the
coeflicients (a, b, c). This is an instance of a general pattern that appears in many probabilistic
programs, and is one key place where vectorization can yield significant speed-ups: when parts of
the generative model itself can be parallelized.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:5

Generative functions Vectorization of generative functions using vmap
1 # Basic polynomial model 18 @gen
2 @gen 19 def npoint_curve(xs):
3 def polynomial(): 20 (a, b, ¢) = polynomial() @ "curve"
4 # @ denotes introduction of 21 # Vectorization for modeling: here, over data points
5 # random choices 22 ys = point.vmap(args_mapped=0)(xs, a, b, c) @ "ys"
6 a = normal(@, 1) @ "a" 23 return (a, b, c), ys
7 b = normal(o@, 1) @ "b" 24
8 c = normal(@, 1) @ "c¢" 25 # Vectorized sampling from the generative function
9 return (a, b, c) 26 # using the simulate interface.
10 27 xs = array([0.1, 0.3, 0.4, 0.6])
11 # Point model with noise 28 traces = vmap(simulate(npoint_curve), repeat=4)(xs)
12 @gen 29
13 def point(x, a, b, c): 30 # Vectorized evaluation of the pointwise density
14 y_mean = a + b * x + c * x *x 2 31 # using the assess interface.
15 y = normal(y_mean, ©0.2) @ "obs" 32 Xs = traces.get_args()
16 return y 33 densities, retvals = (
34 vmap(assess(npoint_curve), args_mapped=0)(
35 traces, xs
36)
37)

Fig. 3. Vectorization of generative functions. Left: Probabilistic programs encoding a prior over quadratic
functions, and a single-datapoint likelihood. Right: vmap can be used to parallelize the likelihood: the same
program that works for single points (L11-16) works for many points (L22) via vmap. Inference operations
(L27, L29-36) are also compatible with vmap.

Simulating a trace Structure-preserving vectorization of traces

log p = -4.70 log p = -5.32 log p = -2.77 log p = -1.52
Trace from vectorized model Vectorized trace from vectorized model £3203]
f32[] density |]og p
density ? -
— 532
—-4.70 =277
£3200 fF320] 3203 32031 £32[3] 32[3] 152

Fig. 4. Vectorized traces. Top: Traces from a single simulate call (left) and vectorized vmap(simulate)
call (right) showing multiple sampled polynomial curves with varying parameters. Bottom: vmap induces
a transformation on the values in the trace, shown with shape annotations. Purple outline and shading
indicates random choices vectorized by vmap. The vmap operation preserves the structure of the trace, while
converting scalars to arrays, returning a trace in struct-of-array representation.

2.2 Vectorized Programmable Inference

Generative functions are compiled to implementations of the generative function interface (Fig. 8),
which includes methods like the following:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:6 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

e simulate: runs a generative function and yields an execution trace (trace, for short), a record of
all the named random choices encountered during execution (Fig. 4, bottom).

e assess: given a trace, computes the probability density function of the generative function’s
distribution at that trace (Fig. 4, log p).

A key idea in the design of many systems for programmable inference [7, 8, 19, 51] is that these
methods can be composed to implement inference algorithms. For example, likelihood weighting
involves simulating many possible traces from the prior, and assessing them under the likelihood.
Here, we find a second key use of vectorization: by vectorizing the compiled simulate and assess
methods, so that they can generate or assess many traces at once (Fig. 3, L28,34-36), we can scale
the number of samples (often called particles) in importance sampling and sequential Monte Carlo,
or the number of chains in MCMC, executing the samples or chains in parallel.

In the left pane of Fig. 5, we use the generative function interface methods to implement one-
particle importance sampling using the simulate and assess interfaces. Importance sampling
performs inference by "guessing” (sampling from a proposal distribution) and "checking" (scoring
a guess with an importance weight, a ratio of the likelihood of the guess under the model to that
under the proposal). The more guesses we can make, the better our posterior approximation. We
can use vmap to scale the number of guesses, automatically transforming the single-particle code
into a vectorized multi-particle version (Fig. 5, right pane).

With vmap, changing the number of particles in an inference algorithm like importance sampling
changes only the array dimensions. If the algorithm is executed in parallel on a GPU, this number
can be freely increased as long as the GPU has free memory. In the middle pane of Fig. 5, we
illustrate the scaling behavior of vectorized importance sampling: the time remains near constant
as we increase the number of particles, and the accuracy improves to convergence. This example
demonstrates a common pattern when scaling vectorized inference: we can scale the vectorization
to the capacity of the available GPU memory, with accuracy increasing as we use more memory. In
the bottom pane of Fig. 5, we illustrate the posterior approximations constructed with different
numbers of particles.

2.3 Improving Robustness Using Stochastic Branching

In real-world data, the assumptions of simple polynomial regression are often violated. Our
polynomial model assumes every data point follows the same noise model—but what if 10% of
our measurements follow a different distribution? The bottom left panel of Fig. 6 illustrates how
inference breaks down when the model’s assumptions are violated in this way. Importance sampling
produces a tight fit but does not capture the explanation that we intuitively expect for the data:
there is a clear quadratic trend obeyed by most of the datapoints, with a handful of outliers. The top
panels of Fig. 6 show how we can improve our model’s robustness by using stochastic branching,
which allows us to account for outlier observations through heterogeneous mixture modeling.
Instead of one noise model, we use stochastic branching to select between different models of the
observations. The selection is based upon a random variable that we may infer from data: each data
point gets a latent "outlier flag"—if true, the observation comes from a uniform distribution; if false,
it follows our noisy polynomial curve. If inference works effectively, we’d expect the explanations
of the data to identify the outliers and ignore them while inlier data informs the fit of our curve.

2.4 Improving Inference Accuracy Using Programmable Inference

Even when a model’s assumptions are sensible, inference can fail to find good explanations of a
given dataset. The middle panel of Fig. 6 shows the results of importance sampling applied to the
outlier model. Importance sampling identifies likely outliers, but has wide uncertainty over the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:7

1 # Single particle importance sampling. 10 # Vectorized over N particles.
2 def importance_sampling(ys, xs): 11 def vectorized_importance_sampling(ys, xs, N):
3 trace = simulate(default_proposal)(xs) 12 # vmap automatically batches over n copies
4 logp, _ = assess(npoint_curve)(13 return vmap(
5 {"ys" : {"obs" : ys}}, 14 importance_sampling,
6 XS 15 repeat=N
7) 16)(ys, xs)
8 W = logp - trace.get_score() 17
9 return (trace, w) 18 # Compute log marginal likelihood estimate.
19 def Imle(ws, N):
20 return logsumexp(ws) - log(N)

GPU OOM GPU OOM
2o | 01 //—0'" .
— 1 1
1 w 1
g 030 | 2 -3004 |
E gt =g-0-00> 0900y 0000000 04 ! 5 1
€ GPU i i
é 0.154 Underutilized i —600 i
102 108 10 105 106 102 108 10 105 10°
Number of Samples Number of Samples
N = 10! N = 102 N = 10°
= True curve
0.3 True noise
@ Data //
//
Y o.0- _se®
—0.31
0.0 05 1.0
X

Fig. 5. Vectorized programmable inference. Top left: Single-particle importance sampling with a proposal
(default proposal here means the prior in the npoint_curve model, excluding the "obs" random variable)
implemented using generative function interface methods (simulate and assess). Top right: Using vmap, we
can automatically transform the single-particle version into a many-particle vectorized version. Middle: The
vectorized version runs in parallel on GPUs: the runtime is nearly constant as long as the GPU has memory to
spare. Increasing the number of particles increases accuracy. Bottom: Posterior approximations for different
numbers of particles N.

possible curves, and several curves do not seem to explain the data well. This is a kind of underfitting:
by adding new latent variables to our model, we have made inference more challenging, and the
“guess and check” approach of importance sampling runs into limitations, even with N = 10°
particles — the limit where our GPU memory begins to saturate.

The right panel of Fig. 6 illustrates the results of a custom hybrid algorithm, which combines
Gibbs sampling [29] and Hamiltonian Monte Carlo (HMC) [67]. The algorithm uses Gibbs sampling
to identify which points are outliers, and HMC to sample from the posterior distribution over
curves, given the inliers. As suggested by the figure, this algorithm generates much more accurate
posterior samples that explain the data well. Its implementation, which we discuss next, illustrates
a third opportunity for vectorization in programmable inference.

Vectorized Gibbs Sampling. In Fig. 7, we present the GenJAX implementation of the Gibbs sampling
step of our hybrid algorithm. Our implementation highlights several new generative function

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:8 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Robust modeling with stochastic branching

1 # Outlier-robust observation model 12 # Vectorized curve model with outliers
2 @gen 13 @gen
3 def point_with_outliers(x, a, b, c): 14 def npoint_curve_with_outliers(xs):
4 outlier_flag = bernoulli(@.1) @ "outlier" 15 (a, b, ¢) = polynomial() @ "curve"
5 y_mean = a + b * x + Cc* x ¥k 2 16 ys = point_with_outliers.vmap(
6 return cond(outlier_flag, 17 args_mapped=0,
7 lambda x: uniform(-2.0, 2.0), 18)(xs, a, b, c) @ "ys"
8 lambda x: trunc_norm(x, 0.05, 2.0), 19 return ys
9 y_mean,
10) @ "obs"
Curve model Robust curve model with outliers
21 [(good inference, bad model)] [(bad inference, good model)] [(good inference, good model)]
@ [] [J
°)
[} []
Y o=
True noise
—24 = True curve = = Qutlier bounds
= |Importance Sampling = Importance Sampling — Gibbs/HMC
0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
X X X
0.0 0.2 0.4 06 0.8 1.0

P(outlier)

Fig. 6. Robust modeling with stochastic branching. Stochastic branching allows us to extend our models to
explain more complex data, including data with outliers. Circle markers depict observed data points: the
shading of the marker denotes the estimated posterior probability that the point is an outlier. Bottom, left:
Using importance sampling to construct a posterior in our original model results in a poor explanation of
the data. Bottom, middle: Extending the model to explicitly represent outliers as random variables should
allow us to produce better explanations, but results in a harder inference problem which importance sampling
can’t effectively solve. Bottom, right: Changing inference to vectorized MCMC using Gibbs sampling (to infer
outliers) and Hamiltonian Monte Carlo (to infer continuous parameters) finds better explanations of the data,
i.e., more accurate posterior approximations.

interface methods (Fig. 8), including trace manipulation and getter methods. When we call the
getter trace.get_subtrace("ys"), we extract the portion of the trace underneath the address "ys".
The call to the update method passes a dictionary of constraints that specifies updates to the
"outlier" entries: update replays the program and splices those choices into the trace, returning a
modified trace together with the incremental weight induced by the change. In our outlier model,
we apply Gibbs sampling to update the vector of outlier choices "outlier" (which are Booleans),
keeping other random choices constant. As each outlier choice is conditionally independent from
the others, given all the non-outlier choices, the "outlier" updates can be vectorized. For each
element in the "outlier" vector, we enumerate the unnormalized posterior density (using the
generative function assess method) for the possible values for the outlier value, and then sample
a new value from a categorical distribution, with probabilities proportional to the computed
densities. Combining Gibbs sampling for discrete "outlier" choices with HMC for continuous

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:9

Enumerative Gibbs update for single point Vectorized enumerative Gibbs
1 def gibbs_outlier(subtrace): 1# “trace” is a single trace object
2 def _assess(v): 2 # whose fields store batched values.
3 (x, a, b, ¢) = subtrace.args() 3 def enumerative_gibbs(trace):
4 chm = {"outlier": v, 4 xs = trace.get_args()
5 "obs": subtrace["obs"1} 5 # ‘subtrace" refers to the struct-of-arrays
6 log_prob, _ = assess(point_with_outliers)(| ¢ # view for the "ys" addresses.
7 chm, x, a, b, ¢ 7 subtrace = trace.get_subtrace("ys")
8) 8 new_outliers = vmap(gibbs_outlier)(subtrace)
9 return log_prob 9 # ‘update’ applies the generative function
10 10 # interface method that edits a trace.
11 log_probs = vmap(_assess)(11 new_trace, weight, _ = update(
12 array([False, Truel) 12 trace,
13) 13 {"ys": {"outlier": new_outliers}},
14 return categorical(log_probs) == 1 14)
15 return new_trace

Fig. 7. Vectorized enumerative Gibbs sampling for outlier detection. Left: Enumerative Gibbs update for a
single data point’s outlier indicator. For each possible value (inlier/outlier), we compute the log probability
under the model (proportional to the unnormalized posterior) and sample a new indicator using categorical
sampling. Right: Vectorized Gibbs sampling step that applies the single-point update across all data points
using vmap, then updates the trace with the new outlier indicators.

simulate: sampling assess: density evaluation
1 # Unconstrained sampling of a trace 4 # Evaluate log density at traced sample
2 tr = simulate(npoint_curve)(xs) 5 chm = get_choices(tr)

. . logp, retval = assess(npoint_curve)(chm, xs
generate: importance sampling ¢ toep v (npoi urve)(xs)

8 # Constrained sampling of a trace update: trace modification
9 partial_chm = {"ys": {"obs": data}} 13 # Modify a trace given constraints
10 tr_, weight = generate(npoint_curve)(14 new_chm = {"curve": {"a": 1.0}}
11 partial_chm, xs 15 tr_, w, discard = update(npoint_curve)(
12) 16 tr, new_chm, xs
17)

Fig. 8. Generative function interface methods. GenJAX’s generative functions provide several methods for
programmable inference - a way to extend the system with new variants of inference using high-level
interfaces. For authoring programmable algorithms which use proposal distributions (like sequential Monte
Carlo), the simulate method performs unconstrained sampling and reciprocal density evaluation. For density
evaluation, assess evaluates the log joint density of a generative function on traced samples. The generate
interface performs constrained sampling (using importance weighting), allowing construction of a trace with
observation constraints. The update method modifies a trace with provided choices, returning an updated
trace and an incremental importance weight, and is used by algorithms like Gibbs sampling or Hamiltonian
Monte Carlo to modify traces.

curve parameters, we designed an effective custom MCMC algorithm for inference in the outlier
model, capturing an accurate posterior over curves.

3 Formal Model

In this section, we give the syntax and semantics of a core calculus for traced probabilistic program-
ming with vectors, and formalize a program transformation that vectorizes probabilistic programs.
The formal model distills key ideas from our actual implementation in JAX, described in Section 4.
Figure 9 illustrates the link between implementation and core calculus.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:10 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

GenJAX Implementation

1 # Generative function definition
2 # with @gen decorator

3 @gen

4 def point(x, a, b, c):

5 y_mean = a + b * x + ¢ * x *x 2
6 y = normal(y_mean, 0.2) @ "obhs"
7 return y

8

9 @gen

10 def npoint(xs):

11 (a, b, ¢) = polynomial() @ "curve"
12 ys = point.vmap(

13 args_mapped=0,

14)(xs, a, b, c) @ "ys"

15 return (a, b, c), (xs, ys)

17 # Core interface usage

18 # Sample a trace

19 tr = simulate(npoint, xs)

20

21 # Density evaluation

22 chm = get_choices(tr)

23 logp, retval = assess(npoint, chm, xs)

Syntax in Aggn

-- Generative function definition

-- with explicit types

point :: R— R® - G R

point x (a, b, ¢) = dog
-- shorthands: + for add, x for mul
y_m « pure (a + b x x + ¢ x x%)
y « trace "obs" (normal y_m 0.2)
returng y

npoint :: R[n] —» G R[n]
npoint xs = dog
(a, b, ¢) « trace "curve" polynomial
ys « trace "ys" (
vmap{A x . point x (a, b, ¢)} xs

)

returng ys

-- Core interface usage
-- Sample a trace
tr = simulate{npoint xs}

-- Density evaluation
chm, _, _ = tr
logp, retval = assess{npoint xs} chm

Fig. 9. GenJAX implementation vs. formal syntax. The GenJAX implementation (left) provides probabilistic
programming abstractions in Python with the @gen decorator and the @ operator for addressing. The formal
model (right) uses Haskell-like notation to emphasize mathematical structure: generative functions as monadic
computations with type G 7, the trace construct for recording random choices with addresses, and vmap{-},
simulate{-} and assess{-} as program transformations.

3.1 Syntax of AGeN

AGeN is a simply-typed lambda calculus which extends a standard array programming calculus in
two main ways:

(1) a probability monad P for stochastic computations; and
(2) a graded monad G of generative functions, or traced probabilistic programs.

Generative functions can be automatically compiled to the density functions and stochastic
traced simulation procedures necessary for inference (Section 3.3).

Types. The types of Agen are given at the top of Figure 10, and comprise:

o Ground types. We define representative base types: booleans B, real numbers R and positive real
numbers R.o. A batched type T is a base type B or a tensor type T[n]. A tensor type T[n] is an
n-fold product of a type T, representing an n-dimensional array of elements of type T. The ground
types 5 consist of batched types T, product types ; X 12, the unit type 1, and string-indexed
record types {kj : 1, ..., kn : nn}, where all keys k; are distinct. The type of empty record is also
noted 1.

o Density-carrying distributions. The type D n represents density-carrying distributions over the
ground type 1. We assume that for each primitive distribution d : 1 — D 13, we have an

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:11

Base types B:=B | R | R.¢ Ground types =1 |T | ny Xn2 | {k1 : 1, kn = jn}
Batched types T ::= B | T[n] Typestu=n|n > n|nxn|[Dn|Pn|G,
Grading y == {ky : n1,.... kn : qn} Monadic m ==t | x « t;m

Termst==() | c|p| x| (ts,t2) | mit Constants ¢ :=a (€ T)
| t[k] | {k1:tr, ... kn:tu} Primitives p ::= Scalar | Vectorized | Array | Distribution
| t1t | Ax.t | letx =t in ¢, Scalar ::= cos | sin | exp | add | mul
| select(ty, t, t3) | trace(s, t) Vectorized ::= dot | svd | sum
| returng ¢ | returnp ¢ Array ::=fold | scan | reduce

| dog{m} | dop{m} | sample t Distribution ::= uniform | normal | bernoulli

T'rt:Py T,x:pt+dop{m}:Pp’ T'rt:Dy Tre:f{ki:in,...kn:innt k=k
T+ dop{x <« t;m}:Pn’ I'+samplet:Pp T+ tlk] :n;

Trty:inp ... Trtyimy Trt:ng F'rt;:B° Trty:T° Tritz:T*
Tr{kicty, . kn:itnt:idkiin,....kn:nn} Trreturnpt:Pp T + select(ty, tr, t3) : T°
l"l—tlle[n] I'tty: T »T, -1, Ttri3: T l"kt:Pn l"i—t:GYry

T+ fold(ty, tp,t3) : Tp I'+dop{t}:Pn T rdog{t}:Gyn
Fl—tlle[n] I'tty: T »T, -1, Ttriz: 1 k € Str Tl—t:Gyr] k € Str FFtIDI]

T+ scan(ty, t2, t3) : (Tz[n] X T3) I+ trace(k,t) : Gxmyy n T +trace(k,t) : Gy 7

Tri:p Trt:Gyn Tx:prdog{m}:Gyn' keys(y) Nkeys(y’) =0
T Freturng t: Gy 1 Tk dog{x < t;m} : Gy 4y 1

Fig. 10. Syntax and typing rules of Agen

additional density primitive d.density : n; — 1, — R that computes the associated probability
density (or mass) function with respect to the stock measure on 7.

o Stochastic computations. The type P n is used to track computations that use probabilistic sampling.
We use a Haskell-like do notation. dop{x « t; m} sequences probabilistic computations, where x
is bound to the result of ¢ in the continuation m. returnp ¢t embeds a deterministic computation
t as a probabilistic one, enabling deterministic logic within probabilistic computation. sample ¢
samples from a given primitive distribution.

o Traced generative functions. The types G, 1 represent traced generative functions. Here, y is
a grading tracking the type of the generative function’s trace [50]. The grading is a record
type {k1 : 1, ...,k : 1}, where the keys k; track the names supplied to trace(, -) calls in the
probabilistic program, and the corresponding ; is the type of data traced by each call. Note that
when a generative function traces a call to another generative function, the corresponding z;
will itself be a string-keyed record, leading to the sorts of hierarchical traces depicted in Fig. 4.
We equip the grading with a monoid structure + for concatenation. It merges two records in
an obvious way. The unit of the monoid is the empty record {} of type 1. This turns G, 5 into
a graded monad, where sequencing two generative function programs via dog{} concatenates
their trace types. Note that we restrict the return type 7 of a generative function to be ground.

o Functions. We also have standard function types r; — 7.

IThese stock measures are defined in the standard way, by induction on 17,. At continuous base types (e.g. R), we choose
the Lebesgue measure, and at discrete base types (e.g. B), the counting measure. Products of base types, including product
types, record types, and tensor types, have as stock measures the products of the stock measures of their constituent types.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:12 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Tensor Shape Notation. A tuple (si, ..., sg) of natural numbers is called a tensor shape. For any
batched type T, we write T* as shorthand for T[si] ... [s1].
A shape t has prefix shape s if s :== (s1,...,sg) and ¢ := (s1,. .., Sk, b1, - - -, Im). Shape concatenation:

if 51 := (s%, .. .,sllc) and sy := (s%, .. .,st.), then s; + sy := (s}, o..,s) sf, .. .,s?). Shape subtraction:

given shapes s, t where t has prefix shape s, we write t — s for the uni]zlue shape s; such that s+s;, = 1.
For shape s = (sy,...,sk), we write i € stomean i € {(i1,...,ix) | Vj,1 <i; < s;}. We also use
this syntactic notation for sets and functions. Given set X and shape s = (s, .. ., s¢), we write X*
for X*1**%_ Note that (X7)* = X**9. For x € X*® and i € s, we write x[i] for the i-th projection
of x. For x € X" where t has prefix shape s and i € s, we extend x[i] to denote an element of
X!, For function f : X — Y and shape s, we write f; : X° — Y* for pointwise application:
(fs(x)[i] = f(x[i]). This extends to multi-argument functions: f; : X7 X ... X X — Y X ... X Y.

Terms. The terms of Agpn and their typing rules are given in the middle and bottom parts of
Figure 10. Terms include:

e String-indexed record literals {ky : t1,...,ky : t,}, which create a record with keys ki, ..., k, and
associated values computed by the terms 1, . . ., t,. If t is of record type, t[k] retrieves the value
associated with key k.

e Constants. Constants ¢ include base values a € B for every base type B and for every tensor type
T. A value of type B[sk]...[s1] is a k-dimensional array of type B. The tuple s := (sq,...,s¢) is
called the tensor shape of the tensor.

e Scalar Primitives. Scalar primitives include elementwise operations such as cos, exp, and mul.

o Vectorized Primitives. Vectorized primitives include operations that operate across tensor dimen-
sions, such as the dot product (doty : T — T — R, where T has base type R), singular value
decomposition (svdy ., : R[m][n] — R[m][n] x R[m][n] X R[m][n]), and summation (sumr :
T — R, where T has base type R).

e Array Primitives. Array primitives include operations that operate on arrays, such as fold, scan,
and reduce. fold repeats a binary function over an array, scan further returns the intermediate
results, and reduce is a parallel version of fold that assumes the operation to be associative.

e Batched primitives. We assume that every primitive (scalar, vectorized, array, and distribution)
p can be subscripted with a tensor shape s to obtain ps, representing a batched version of
the primitive that is applied element-wise. For instance, for the scalar primitive cos we have
coss : R® — R®. Given a vectorized primitive such as dotg[,], dotg[,)s : R[n]° X R[n]® — R®
(for tensor shapes s) represents a batched version of the primitive dotg[,).

o Distribution primitives. The language provides built-in distribution constructors: uniform : D R
is the uniform distribution over (0, 1), normal : R X R,y — D R is the normal distribution
with mean and variance parameters, and bernoulli : R — D B is the Bernoulli distribution
with a probability parameter. Batched versions of distribution primitives generate tensors of
independent samples. For instance, for a distribution constructor such as uniform, we have
uniform; : D R® returning independent samples from the uniform distribution on (0,1) in a
tensor of shape s.

o Traced programs. Traced programs are written in a monadic style similar to dop{}. The key
change is that all sampled variables must be named, and are accumulated into a trace. We
write Str for the set of strings. Primitive distributions ¢ : D 7 can be sampled using the syntax
trace(k,t) : G{rp) 7; the resulting program returns the sampled value and records it in the
trace with name k € Str. Compound generative functions ¢ : G, 1 can also be arguments to trace:
in this case trace(k, t) has type G} 1. Note that in the trace type, the entire trace type y
of t has been nested under the name k. Deterministic computations can be embedded into G
with the syntax returng t : Gy} 7; the resulting programs have empty traces. dog{x « t;m}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:13

Types
[B] =B 71 % n2] = [[m] x [7:] _
[RI =R KCRUTSSCRTS) [Y IR O I o R L
T =[T]" 1 — = 1l <
SR “teml [6, 11 =PIyl x Iy Inl)
Terms
[0l =0 [t £211(y) = [t (210
[ps1(y) ps [, 221 () = ([t 1), [0 (r)
[x: 7] (y) = y(x) [returng t] (y) = (601, A0-[t1 ()
[al () =a [trace(k.t: Gy D] (y) = [t](y)
[t[k]T(y) = ([tly)e [trace(k,t :D)[(y) = ([t](y), Ax.x)
[7:t](y) = ([t [Ax : z.t] (y) = Ax: [].[](y)
[dop{t}(y) = [tl(y) [let x = t; in £,] (y) = [Ll(yx = [u]lW]D
[returnp t](y) =) [select(ty, 22, £3)] () = select([t:] (), [t (). [£:] ()

[sample t](y) = [t](y) [{ki:tr,ekm () = (L]] (1)
[dog{t}(y) = [t1(y) [dop{x « t;m}(y,A) = [[t](y.dw)[m](y[x > u], A)

[dog{x « t;m}]i(y.A) = [[t]i(y.du) [[doc{m}](y[x = [t]2(y) ()], d0)Suss(A)
|[d0G{x —t; m}]]Z(Y) = Atr'[[doG{m}]]Z(Y[x = [[t]]Z(Y)(”grade(t)(tr))])(ﬂgmde(doc,{m})(tr))

Fig. 11. Denotational semantics of Agen

can be used for sequencing, but the top-level names used in ¢t and m must be disjoint. Using the
trace(k, t) construct to nest a call to a generative function under a new label k is one way to
ensure disjointness even when the same subprogram is invoked multiple times.

o Other terms. We also have the standard terms of the A-calculus, e.g. the unit value (), variables x,
abstractions Ax.t, applications ¢ t, tuples (1, t,), projections 7;t. We write select(ty, t,, t3) for
the conditional selection of elements from a tensor. The three subterms must have batched types
of the same shape, and the returned value at index i is t,[i] if #; [i] is true, t53[i] otherwise.

3.2 Denotational Semantics

Figure 11 gives a denotational semantics for Agen using quasi-Borel spaces (QBS) [39], a standard
mathematical framework for higher-order probabilistic programming. See the supplementary
material for the definition of QBS. We assign to each type 7 a space [[7]] and to each term T + ¢ : 7 a
map [t] : [Teer[T(x)] — [z]] from the interpretation of the environment to the interpretation of
its return type. We use [X, Y] to denote the quasi-Borel function space, X X Y for the product, 1 for
a singleton QBS, and denote by P the probability monad on QBS (see, e.g., Heunen et al. [39]). We
also use ® for the product measure, and J, for the Dirac measure at x. Base types are interpreted as
their usual sets equipped with the Borel-sigma algebra (random elements are measurable functions).
All our ground types are interpreted as standard Borel spaces, and we denote by P«[[1] the space
of probability measures on the standard Borel space [] that are absolutely continuous w.r.t. the
stock measure for type 7. A generative function of type G, 7 is interpreted as a pair of a measure
on y that is absolutely continuous w.r.t. the stock measure on [[y], and a return value function
[¥] = [7]] which computes the program’s return value given a trace, i.e. given values for all the
random choices in the program. If [¢]| denotes a tuple, such as when ¢ : G, n, we write [[]; for
its k-th component. For a trace tr € [y + y’], we write 7, (tr) and 7,/ (tr) the projections to [y],
[y'] respectively. For a term ¢ of type G, 1, we write grade(t) to extract the grade y.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:14 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Programmable inference transformations on types

simulate{D 5} =P (yxR) assess{Dn} =n—-oR
simulate{G, n} =P (yxnxR) assess{G,n} =y—nxR
Transformations act homomorphically on product and function types and leave ground types unchanged
(e.g. assess{r; — 1,} = assess{r;} — assess{r2}).

On terms
simulate{bernoulli} = Ap.dop{b < sample (bernoulli p); returnp (b, select(b,p,1 - p))}
simulate{returng ¢} = returnp ({}, simulate{t}, 1)
simulate{trace(k,t : D)} =dop{(x,r) « simulate{t};returnp ({k : x},x,r)}
simulate{trace(k,t : Gy)} =dop{(u,x,r) < simulate{t};returnp ({k : u},x,r)}
simulate{dog{x <« t;m}} = dop{(u,x,w) « simulate{t}; (v',y, w') < simulate{dog{m}};
returnp (u +u',y,w-w')}
assess{bernoulli} = Ap.Ab.select(b, p,1 - p)
assess{returng t} = Au.(assess{t}, 1)
assess{trace(k,t: D n)} = Au.(ulk], assess{t}(u[k]))
assess{trace(k,t: G, n)} = Au.assess{t}(u[k])
assess{dog{x « t;m}} = Au.let (x,w) = assess{t}(/grade(s) (1)) in

let (y, w’) = assess{doG{m}}(ﬂgmde(doG{m}) (u)) in(y,w-w’)
Transformations act analogously to bernoulli on other primitive distributions, and homomorphically on

terms introducing or eliminating products and functions (e.g., assess{ (1, z)} = (assess{t;}, assess{tz})).

Fig. 12. Definitions of the simulate{-} and assess{-} transformations, on types and terms.

3.3 Programmable Inference

Generative functions support methods simulate{—} and assess{—}, which are implemented as
source-to-source program transformations. We present the transformations, which are standard [50,
54], in Figure 12. At a high level, simulate{—} allows us to run the program and simulate traces. It
returns a trace of the program, a return value, and the joint density at that sampled trace. assess{—}
returns the density of a given trace. It does so by running the program, but with each primitive
sampling statement replaced by code that looks up the pre-determined outcome in the given trace,
and multiplies the density of the primitive distribution into a running total. The key correctness
property of simulate{—} and assess{—} is given in Proposition 3.1, which can be proved using a
standard logical relations argument analogous to the ones given in, e.g., [7, 51, 54]. We denote by
f+pt the pushforward distribution of y by f.

PROPOSITION 3.1. Lett+ t : G, n be a closed term of generative function type, with denotation
(1, f) = [[t]]- Further, let v be the stock measure associated with the record type y. Then:

o [simulate{t}] = (id, f, %)*,u (i.e., simulate{t} faithfully generates a trace u from p, and

returns (u, f (u), w), where w is the density of u at u); and

o [assess{t}] = {f, %) (i.e, assess{t} faithfully computes the return value function and the
density of u at a given trace).

3.4 Vectorization Program Transform

We introduce vmap, {—} as a program transform for vectorization. vmap,,{—} takes an integer n
and a term ¢ of type 7 and returns a vectorized version of type 7[n], defined inductively as follows:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:15

Types and contexts

vmap,{r} =7[n] vmap,{x;:7,....x: 7%} =x1:7[n],..., xx = [n]

Terms

vmap,{()} =() vmap,{a:T} =a":T[n] vmap,{ps} =pm)+s
vmap, {-} acts homomorphically on other terms (e.g., vimap,,{t; t,} = vmap,{t;} vmap, {t,}

Fig. 13. Inductive definition of vmap, {-}, a vectorization transformation, on types and terms.

R, = {((x,...,x),x) | x € [[1]}

Rp = {((x1, ..., xn), %) | xi € [B], x=(x1,...,x0)}

Rr = {((xty s xn), %) | x5 € [T, x = Gty e v xn)}

Re xz, ={((xnv1), o (Xn yn)), (21, 22)) | (%1, ..., Xn),21) € Ry, (Y1, -, Yn), 22) € Ry, }
Reor, = A{((fis s), @) | Y(Gen o xn),y) € Ry ((fi(x1)s - fa(xn)). g) € Ry, }
Rikympkmenmy = {01 x0), y) | Vi €{1,...,m}, ((jx1, ... 5xn), 7jy) € Ry, }

Rp, = (oo ptn)) | = Ry (R i)}

Rp = (s ptn)) | = Ry (R 1)}

Rg, 4 = {1 f1)s oo (s fu))s (Vi @) | (s -+ s pn)s v) € Rp g, ((f1 -5 fn), 9) € Ry}

Fig. 14. Logical relations for establishing the correctness of vmap.

(D n)[n] :==D n[n] (11 =) [n] ==11[n] — ro[n]
(Gy n)[n] == Gy nlnl (1 X ©2) [n] == 11[n] X 72[n]
(P n)[n] =P n[n] 1[n] ==
{k1:n1, .- kn s qutn] s={ky : m[nl, ... kn - nun]} (T)[n] ==T|[n]

On primitives, vmap, {—} will simply extend the batching shape s of the primitive to (n) + s.
For instance, vmap, {add;} : R+ — R+ — ROV will be the elementwise addition of
two tensors of shape (n) + s. vinap,{—} performs an automatic "array of struct” to "struct of
array” conversion, and extends homomorphically to all the constructs of the language. We present
vmap, {—} as a program transformation in Figure 13. If a is a tensor literal of shape s, we denote
by a" the tensor literal of shape (n) + s that consists of n copies of a.

To prove the correctness of vimap, {}, we use a proof by logical relations. In Fig. 14, we define
relations R, C [z]]* X [z[n]] for all types 7, which intuitively encode the requirement for a value
of type 7[n] to be a correct vectorization of n distinct values of type 7. We denote by R, _u the
pushforward of the distribution y by the functional relation R,.* This relies on the fact, which
can be established via a simple inductive argument, that for ground types 7 our logical relations
are functional. Having defined these logical relations, we establish the fundamental lemma by
induction on the structure of the program.

PROPOSITION 3.2 (FUNDAMENTAL LEMMA FOR VMAP,{-}). Letn € Nandx; : 7,...,Xm : T b £ : T.
If((vjl., .. .,v;.l),wj) € Rijoreachl <j<myandify' = (x1 > 0}, ..., Xy > 0,,) foreach1 <i <n,
andy’ := (x1 > Wi, ..., Xy, > Wy,), then

(LD, - el ™), [vmap, {31 (v)) € R,

The correctness of vinap, {—} is obtained as a corollary of the fundamental lemma.

2Recall that a relation is functional if it specifies a function, i.e., for every x there is exactly one y such that (x, y) € R.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:16 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

THEOREM 3.3 (CORRECTNESS OF VMAP,{—}). If+t : T — t is a closed program of function type,
then for allv of type T[n]:

o 7 =n:[vmap,{t}](v) = zipn([[t]] (o[1]), ..., [t (v[n])), i.e. vmap,{—} correctly vectorizes
deterministic functions.

e 7 = Pp:[[vmap,{t}](v) = zipq*(®?:1[[t]] (v[i])), i.e. vmap,{—} produces vectors of inde-
pendent samples when applied to stochastic functions.

et = G, n: [vmap,{t}](v) = (zip, (R[] (olil)), Ar-zip, ([¢]2(o[1]) (unzip, (M) [1]),
. [[t]]z(v[n])(unzipy(r) [n])) i.e. the trace distributions and return value maps of generative
functions vectorized by vmap,{—} are vectorizations of the original generative functions’ trace
distributions and return value maps.

Here, zip, : [n]|" — [n[nl] is the bijection between n-fold products of values in [[n] and their
(struct-of-array) vectorized representations [[[n]], with inverse unzip, : [n[n]] — [n]".

As an additional consequence of the fundamental lemma, we also get the following important
commutativity relations, which we exploit in our implementation (Section 4.2):

COROLLARY 3.4. Lett+ t : Gy, 1 be a term of generative function type. Then:

o [simulate{vmap, {t}}] = (id, id,v — [];v[i]).[vmap,{simulate{t}}]: a correct imple-
mentation of simulate{vmap,{t}} can be obtained by applying vmap, {-} to simulate{t}
and collapsing the returned vector of densities to a single density via multiplication.

o [assess{vmap,{t}}]| = let a,b = [[vmap, {assess{t}}] in (a, [1;b[i]): a correct imple-
mentation of assess{vmap, {t}} can be obtained by applying vmap, {—} to assess{t} and
collapsing the returned vector of densities to a single density via multiplication.

See the supplementary material for proofs.

3.5 Stochastic Branching

We can extend our formal model with support for stochastic branching, allowing us to account for
vectorization of mixture models (including, e.g., the program in Fig. 6). To start, we add a construct
for stochastic branching with homogeneous gradings, cond(#1, t3, t3, t4):

Frt:B° rta:im =Gy ki3 = Gyny Tktyins]
Tk COIld(tl, to, t3, t4) : Gy[s] N2 [S] '

The expression cond(t, to, t3, t4), where t; has type B®, denotes the generative function that
runs s-many independent executions of either t; or t3, as selected by the provided Booleans in
t;, with arguments provided by #,. Its trace distribution contains all s-many traces from these
executions, and its return value function computes the s-many return values they yielded. We
denote by vmap,, .) the composition of program transformations vmap,, o...o vmap, and
by product : R[n] — R a new primitive construct which multiplies all its arguments. Now, we
extend our program transformations to handle cond as follows. First, we define a useful lifting of
select to operate component-wise on traces:

select(i,.p, kgt (b1, 1) =
{ky : selecty, (b, ulki],u'[ki1]), ..., km : select,, (b, ulkp],u'[kn])},
selectys (b, x,y) = select(b, x, y),

with analogous clauses for products.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:17

simulate{cond(t, s, t3, t4) } = dop{ assess{cond(ty,ty, t3,t4)} = Au.

(uz, vz, W) « vmap_ {simulate{t,}}(ts); let (v, wp) = vmap {assess{t;}}(ts)(u) in

(us, vs3, w3) «— vmap {simulate{ts}}(#); let (vs, ws) = vmap {assess{ts}}(ts)(u) in

let uge = select, (5 (t1, up, u3); (select(t1,v2,v3), product(select(t;, wa, w3)))

let 5. = select,, (5] (t1,02,v3); vmap, {cond(ty, tz, 13, t4)} =

let wge) = select(t1, wy, w3); cond(vmap, {t:}, t, t3, vimap, {t4})

returnp (usels Usel, prOdUCt(Wsel))}

Note that the use of vmap, within the simulate{} and assess{} transformations is sound because
vmap, is only applied to closed terms. Our correctness results extend to this enriched language.

All examples in the paper use the homogeneous form above. In §4, we discuss how our imple-
mentation pads traces with sentinel values to support heterogeneous gradings. The supplementary
material further extends our model to include generative primitives that internally use statically
bounded loops via the scan function.

4 Implementation

GenJAX

N

Probabilistic Automation

Generative functions
and inference programs
@gen-decorated Python programs
Generative function interface

program

tracing

Vectorization Automation

Probabilistic JAX
array programs
vmap and seed
program transformations

seed with JAX
—

XLA

Parallel Hardware

PRNG

Shallow embedding in Python Probabilistic extension to JAX)

Fig. 15. GenJAX: compiler for vectorized programmable inference. Our compiler architecture extends support
for JAX’s vmap transformation to generative functions. Users express generative functions as @gen-decorated
functions in Python. To support vmap, inference interfaces are transformed by GenJAX via program tracing
into an intermediate representation that extends JAX with probabilistic sampling primitives. To lower and
execute code, sampling primitives are eliminated by a seed transform, which allows GenJAX code to be
executed by XLA on GPUs.

In this section, we present the key ideas behind the actual implementation of GenJAX atop JAX.
An overview of our implementation is illustrated in Fig. 15. To expose an embedded Python DSL
for our compiler, our implementation makes use of lightweight effect handlers 8, 69] to implement
class methods corresponding to the program transformations presented in §3.1. When combined
with JAX’s support for program tracing (which performs partial evaluation on these lightweight
effect handlers, thereby evaluating them away), this implementation strategy allows us to concisely
embed our probabilistic interfaces and retain JAX compatibility.

4.1
GenJAX is implemented in Python, atop the JAX library for array programming [26].

Probabilistic Programming with Programmable Inference

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:18 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Generative Functions. Generative functions are expressed by users as Python functions decorated
with @gen. The bodies of generative functions may invoke deterministic JAX primitives for numerics
and array programming, and draw string-named samples from primitive probability distributions
exposed by our library (e.g. x = normal(@, 1) @ "x"). The @gen decorator wraps the user’s program
into a GenerativeFunction object, with methods corresponding to the methods of the generative
function interface (simulate, assess, and others as described in Fig. 8).

Generative Function Interface Methods and Lightweight Effect Handling. When invoked, these
methods use lightweight effect handling to intercept samples from primitive distributions and calls
to other generative functions. Each method of the generative function interface defines its own
effect handler class, and a fresh instance is pushed onto a global stack of active handlers when
the method is invoked. The user’s probabilistic program is then run. When a tracing expression
is encountered (e.g., an expression of the form normal(e,1) @ "x"), control is transferred to the
topmost handler on the stack. For example, when tracing an invocation of a primitive distribution,
the handler object for simulate draws a sample from the specified distribution and records its
value in a running trace (mirroring the definition in §3 of the behavior of simulate on the trace
construct). Note that this strategy does not require delimited continuations or other heavy runtime
features of full effect-handling systems.

Nonetheless, dynamic effect handling—and the use of Python data structures such as mutable
dictionaries to accumulate traces—incurs some overhead. To eliminate this overhead, we rely on
JAX’s support for partial evaluation [27, 45, 62]. Given a generative function object, we run each
method (assess, simulate, etc.) with symbolic inputs, and all computation is staged into a Jaxpr, a
first-order array program in SSA form (see Fig. 16, right pane). At this point, all Python constructs,
including those used to dispatch to effect handlers, have been partially evaluated away, leaving
only JAX primitives. We extend JAX’s built-in Jaxpr type to support two new primitive operations,
sample_p for sampling a primitive distribution, and log_dens_p for evaluating the density of a
primitive distribution.®

Traces. Traces are Python objects akin to dictionaries, which Jaxprs cannot directly manipulate.
We use a JAX feature that allows us to register our Trace class as a Pytree, JAX’s name for a nested
Python container of arrays that can be flattened to and rebuilt from a list of arrays, by defining
methods that convert traces to and from nested lists of arrays. These conversions are similar to
those used to define the semantics of record types in our formal model: recall that although the
syntax of a record type involves string-valued keys, our semantics maps every record type to a
simpler nested-tuples-of-arrays representation. The Jaxprs we generate operate on such nested
tuples of arrays.

4.2 Vectorization

Programmable Inference. Once a generative function method has been partially evaluated to a
Jaxpr, we can vectorize the method by transforming the Jaxpr. All JAX primitives have built-in
vectorized versions, analogous to the vectorized deterministic primitives in our formalization. We
include special logic to vectorize the sample_p primitive, implementing the behavior of vmap on
sample described in Section 3 (i.e., vectorized independent sampling).

Models / Generative Functions. To vectorize generative functions themselves (rather than just
the inference programs that operate on generative functions), we rely on the commutativity
result from §3 (Corollary 3.4). Generative function objects expose a vmap class method; calling

3log_dens_p is not strictly necessary, as log densities of individual primitive distributions can be implemented in terms
of existing JAX primitives, but adding it makes the Jaxprs easier to read and debug.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:19

it yields a new generative function object. Its simulate and assess methods are implemented by
applying vectorization to the simulate and assess methods of the original generative function, and
taking the product of the resulting vector of densities. Corollary 3.4 ensures that this is a correct
implementation of these methods for the vmapped version of the original generative function.

Traces. Because traces are Pytree types, when JAX vectorizes a function which returns a trace,
the returned vector of traces is represented as a nested-tuple-of-arrays. When a trace is constructed
using the Pytree interface from the vectorized arrays, it is automatically in struct-of-array repre-
sentation. This process, of identifying the "template" of a Pytree return value, using JAX to perform
a computation, and then zipping arrays into the "template,’ is illustrated in Fig. 16 (struct).

4.3 Stochastic Branching

To support usage of generative functions with stochastic branching, we make use of JAX’s
built-in primitive select_p. Using the types of our formal model, the signature of select_p is
select_p : Ty » T — T — T (where Tg is a batched Boolean). The behavior under evaluation cor-
responds to multiplexing of arrays using the Boolean input array as a selector.” Using select_p, we
implement cond, which accepts two generative functions as inputs (corresponding to the branches
of a conditional) and builds a generative function that branches between them. The branches
are expected to accept the same types of arguments, and return the same type of value. cond can
be invoked with the B[n] selector argument, and a vector of n arguments to the branches. The
generative function interface methods are implemented as follows:

e For simulate, cond calls simulate on each of its branch generative functions. For returned densities,
select_p is applied, using the selector argument. For traces, we reason about named addresses: if
a name is used in both branches, the selector is used to select from the values of each branch.
Otherwise, the selector is used to either pass through the value, or assign NaN (not a number)® to
the address. This means that, unlike our formalism, our implementation supports the use of cond
with branches that have heterogeneous trace types.

o For assess, cond calls assess on each of its branch generative functions. The same behavior as
simulate above is used, for both densities and return values. Some of the computed densities will
be NaN, but they will not be selected by select_p, so the product of selected densities will still be
a number.

The implementations for cond of the other generative function interface methods (Fig. 8) follow the
same strategies. Note that, in the variant described in our formal model (§3.5), the branches share a
homogeneous graded trace type so that the selector can merge their traces component-wise. As
mentioned above, our implementation supports heterogeneous grades by padding with NaN values.
(The examples in this paper, however, do not rely on this generalization.)

4.4 Statically Bounded Loops

Our implementation also allows for a generative analogue of jax.lax.scan for looping generative
functions. We provide a description of this extension in the supplementary material. The methods
of the generative function interface are implemented by applying jax.lax.scan to the callee’s
implementation of the interface methods: the trace is batched by stacking the per-iteration traces,
and densities are accumulated by combining the per-step contributions. The static bound restriction
is important: the scan length N must be known during compilation because JAX requires static
shapes to compile to XLA. Because probabilistic program traces reify the shape of the computation

4JAX does offer an explicit primitive for branching called cond_p, but under vmap, this primitive is automatically converted
to select_p, so our implementation uses select_p directly.
>NaN is a special numeric value often used by numerical computing systems to represent undefined quantities.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:20 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

into a recording of the execution, dynamically bounded loops entail traces whose shapes and sizes
depend on runtime control flow — which directly violates JAX’s requirements.

4.5 Execution on GPU

To compile the final Jaxpr to GPU, we first must eliminate our new primitives (sample_p and
log_dens_p) so that the Jaxpr contains only standard (deterministic) JAX primitives. To do so,
we replace sample_p operations with JAX’s pseudorandom number generation primitives. These
primitives operate on explicitly passed (splittable) counter-based random seeds [76]. Our seed
transformation ensures that a random seed is split sufficiently many times for each vectorized call
to use independent randomness for each dimension of its output.

Order of vmap and seed. Note that it is essential that seeding happens after vectorization. Using
JAX’s built-in vmap on JAX programs that are already written to use JAX’s pseudorandom number
generators would lead each vectorized random sampling operation to generate the same random
number in every component of its output vector. By applying vectorization to a program with
an explicit probabilistic primitive (sample_p), and only then introducing random seeds, our imple-
mentation can ensure seeds are appropriately split before they are passed as input to vectorized
sampling operations.

5 Evaluation

We evaluate our language and compiler implementation on benchmarks and case studies designed
to assess the following criteria:

o (Performance) How does the performance of our compiler implementation compare to lead-
ing programmable inference systems? Do our abstractions introduce overhead compared to
handcoded implementations of inference? We survey the performance properties of GenJAX
against open-source PPLs and tensor frameworks on standard modeling and inference tasks, for both
embarrassingly-parallel algorithms (importance sampling) and iterative differentiable algorithms
(Hamiltonian Monte Carlo).

o (Inference Quality) vmap provides a convenient way to express inference problems over high-
dimensional spaces. Does our design provide the means to construct effective inference approxi-
mations for them? We study probabilistic Game of Life inversion on large boards using approximate
inference, and use GenJAX to construct an efficient nested vectorized Gibbs sampler. We study a
probabilistic model of robot localization using simulated LIDAR measurements, and use GenJAX
to iteratively construct sequential Monte Carlo [20, 23] (SMC) algorithms, including an efficient
algorithm using proposals with vectorized locally optimal grid approximations.

5.1 Performance Survey Evaluation

Figure 17 presents a performance survey of our system compared to open-source tensor frameworks
and PPLs across a handful of models and inference algorithms. In the top panel, we examine the
runtime characteristics of our compiler on importance sampling in a Beta-Bernoulli model. The
model infers the bias of a coin from observed flips, using a Beta(1,1) prior and Bernoulli likelihood.
We observe 50 flips, and construct a posterior approximation using importance sampling. The top
panel confirms that all frameworks accurately recover the true posterior distribution. GenJAX
achieves near-identical performance to handcoded JAX (100.1% relative time). The bottom panel of
Figure 17 presents performance results for importance sampling and Hamiltonian Monte Carlo
(HMC) [67] on the polynomial regression problem from §2. Importance sampling exhibits parallel
scaling with the number of particles: vectorized PPLs and tensor frameworks have near constant
scaling while the GPU is not saturated. HMC is run iteratively: here, the scaling is linear in the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:21

Shallow Embedding Probabilistic JAX program
What users write in Python Probabilistic array program representation
1 # Polynomial curve model which our vmap and seed transformations apply to
2 @gen
3 def polynomial():
4 a = normal(@, 1) @ "a" 1 # Expr of simulate of point
5 b = normal(@, 1) @ "b" 2 lambda %x:f32[]. { let
6 c = normal(@, 1) @ "c" 3 %a: f32[]1 = sample_p(Normal, @, 1)
7 return (a, b, c) 4 %b: f32[] = sample_p(Normal, 0, 1)
8 5 %c: f32[]1 = sample_p(Normal, 0, 1)
9 # Point model with noise 6
10 @gen 7 # Polynomial evaluation
11 def point(x): 8 %l: f32[1 = mul_p(%b, %x) # bxx
12 (a, b, c) = polynomial() @ "curve" 9 %s: f32[1 = mul_p(%x, %X) # x*2

13 y_mean = a + b * x + c * x #*% 2 10 %q: f32[1 = mul_p(%c, %s) # cxx*2

14 y = normal(y_mean, 0.1) @ "obs" 11 %s1: f32[]1 = add_p(%a, %1) # a + bxx

15 return y 12 %ym: f32[]1 = add_p(%s1, %q) # a + bxx + c*x*2
16 13

17 compile(simulate(point))(x) 14 # Observation

15 %y: f32[] = sample_p(Normal, %ym, 0.1)

What our compller does 17 # Density calculations

1 # First, use program tracing. 18 %lp_a: f32[1 = log_dens_p(Normal, %a, @, 1)
2 struct, expr = (19 %lp_b: f32[1 = log_dens_p(Normal, %b, @, 1)
3 stage(simulate(point))(x) expr of 20 %lp_c: f32[1 = log_dens_p(Normal, %c, @, 1)
4) _— 21 %lp_y: f32[]1 = log_dens_p(Normal, %y, %ym, @.1)
simulate 22 %1p: f32[1 = sum_p(%lp_a, %lp_b, %lp_c, %lp_y)
23
l struct 24 # 6 array return values for holes
. 25 return (%a, %b, %c, %y, %y, %l
(stage) staging captures struct 2% } (o 3 W)

as a data template in shallow embedding
| seed transformation

Python structure of trace replaces sampling with PRNG routines
Has 6 holes for array return values .
struct = (Pure JAX Operations
{ "curve": {
"a": e, 1 key_a, key_b, key_c, key_y = random.split(key, 4)
"b": e, 2 %a = random.normal(key_a) * 1.0 + 0.0
"c": o 3 %b = random.normal(key_b) * 1.0 + 0.0
}, "obs": e }, 4 %c = random.normal(key_c) * 1.0 + 0.0
Log density Return value 5 .
., .,
)
Execution - - - - - - - - - - oo oo
Return value in shallow embedding Trace, transform, and then execute
(Zip using struct
{ "curve": { —
‘a": 0.02, Pure JAX
"b": 1.3, q
"c': 0.64 executes using XLA
3, "obs": 2.3 3, (Parallel Hardware)
Log density Return value
-0.676, 2.3,
)

Fig. 16. How our compiler works. (Left, top) Users write high-level probabilistic programs in Python. Interfaces
(simulate) use lightweight effect handlers to intercept @ operations during execution. Our compiler uses
program tracing (stage) to transform the implementation into an array program intermediate representation
with probabilistic primitives (right, top), and captures static host-language structure for the return type (left,
middle). (Right, bottom) The seed transformation eliminates probabilistic primitives for explicit pseudorandom
samplers, producing pure JAX operations for hardware execution. The result is executed via XLA, and returned
to our shallow embedding into the host-language structure.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:22 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Ours Handcoded JAX NumPyro
[Ours H [0 Handcoded JAX H == NumPyro
—— Exact Posterior H —— Exact Posterior H —— Exact Posterior
--- True Mean: 0.714 i --- True Mean: 0.714 --- True Mean: 0.714

0.0 05 1.0 0.0 05 1.0 0.0 05 1.0
Fairness Parameter Fairness Parameter Fairness Parameter
‘ Handcoded - 100.0% (0.105 = 0.002ms)
| ours - 100.4% (0.106 * 0.002ms)
| NumPyro 1 143.3% (0.151 0.004ms)

Handcoded Baseline

0 25 50 75 100 125 150 175
Relative Performance (% of Handcoded JAX time)

(a) Beta-Bernoulli inference accuracy and timing comparison. Comparing the overhead of
inference approximations constructed via importance sampling using GenJAX’s abstractions
to handcoded JAX programs and NumPyro.

10* .
- Smaller is better
g 8091x
] 4107x
£ 102
5
<
8
o 0
5 10
s 0.03 ms 1.2x1:6%
W -

1,000 5,000 10,000
(Importance Sampling) Number of Particles

v Ours [Handcoded JAX [NumPyro [Pyro H Gen.jl I Handcoded PyTorch

6
- 10 Smaller is better
g
@ 104 48x 34x 22x 26X
£ 22x N
=
3
7] 2x 1.5x
O 102 | 8940ms 1.2x
7]
T *
S
10°
100 500 1,000

(HMC) Chain Length

v Ours [Handcoded JAX 3 NumPyro [Pyro HE Gen.jl I Handcoded PyTorchl

(b) Polynomial regression survey. Comparing wall clock runtimes for importance sampling
and Hamiltonian Monte Carlo on polynomial regression (§2).

Fig. 17. Performance evaluation across probabilistic programming frameworks. (a) Beta-Bernoulli inference
comparing posterior accuracy and execution time for GenJAX, NumPyro, and handcoded JAX implementations
with 50 observations and 2000 samples, demonstrating importance sampling using GenJAX’s programmable
inference abstractions is competitive with handcoded performance. (b) Scaling analysis across six frameworks
showing GenJAX achieves performance is consistently near handcoded JAX and competitive with other
open-source PPLs, for both importance sampling and Hamiltonian Monte Carlo.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:23

length of the chain. GenJAX is consistently close to handcoded and optimized JAX, validating that
our abstractions for programmable inference introduce minimal overhead.

5.2 High-Dimensional Vectorized Inference

In this section, we illustrate the usage of GenJAX to develop two more involved applications of
modeling and inference: probabilistic inversion of Conway’s Game of Life [28] (a massive discrete
search problem over cellular automaton dynamics) and 2D robot localization (a subproblem in
simultaneous localization and mapping [24]).

Conway’s Game of Life

Window centered at (i, j)
HOO | [mm] i i i
Omg oog An_y live cell.wn‘h fewer than two live
. oog OO0 neighbors dies
evolving Evolution
Conway’s Game EEE EEE Any live cell with at least 2, but not more than 3,
of Life forward [[m[m] WOO live neighbors survives
—— (applied across (i, j))]
[m]_[m] OO Any live cell with more than 3 neighbors dies
HOE [[m] |

Fig. 18. Deterministic evolution rules for Conway’s Game of Life. In our case study, we add a uniform prior
over board state, and probabilistic Bernoulli noise on top of the deterministic rules to construct a Game of
Life generative function. We can then condition the observed next state, and construct an inference problem
whose solutions correspond to approximate inversions of the Game of Life dynamics.

Previous State Observed State

Inversion via Gibbs One-Step Evolution
66 7

inference

@gen GolL

Final Gibbs state - Next step
32x32 1.5% GPU mmm CPU

Q

N

n 64x64 mm 3.5%

T 128x128 m 8.0x

g 256 X256 —— 12.0x
0 512x512 17.0%
0 5 10 15 20 25 30 35 40

Time per Gibbs sweep (ms)

Fig. 19. Vectorized Gibbs sampling in the Game of Life. Probabilistic Game of Life inversion on the wizard book
cover [2] (1024 X 1024 grid). Top: (1) Previous state (unknown, the target of our inference process); (2) Observed
future state (the target pattern); (3) Vectorized Gibbs chain showing states constructed by inference in a
progression from t = 0 to ¢t = 499; (4) One-step deterministic evolution of final inferred state, reconstruction
accuracy (measured as discrepancy between bits) is around 90%. Bottom: Benchmark timings of single
vectorized Gibbs sweep performance across board sizes, comparing CPU and GPU execution times. GPU
execution timings demonstrate the benefit of parallel hardware acceleration for vectorized inference. Overall:
the runtime takes about 2.8 seconds for 500 iterations on an RTX 4090 GPU, with about 93% reconstruction
accuracy (70,109 bits out of 1,048,576 total bits).

Probabilistic Game of Life Inversion. Game of Life (GoL) inversion is the problem of inverting
the dynamics of Conway’s Game of Life [28]: given a final state, what is a possible previous state

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:24 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

that evolves to the final state under the rules of the game (Fig. 18)? Brute force discrete search is
computationally intractable, requiring evaluation of 2V*N states, where N is the linear dimension
of a square GoL game board. In this case study, we introduce probabilistic noise into the dynamics
of GoL: from an initial state, we evolve forward using the deterministic rules, but then sample with
Bernoulli noise around the true value of the state of each pixel (i.e., the observed value of a pixel has
a small chance of being opposite the true value). In Fig. 19, we illustrate approximate inversion using
vectorized Gibbs sampling [29]. Because each cell’s value is conditionally independent from non-
neighboring cells’ values, given its eight neighbors, we partition the board’s cells into conditionally
independent groups (given the other groups). Within each group, we can perform parallel Gibbs
updates on all the cells, an example of chromatic Gibbs [31]. The generative function representing
probabilistic GoL dynamics and the vectorized Gibbs algorithm are all written using GenJAX’s
abstractions. The result is a highly efficient probabilistic inversion algorithm which can invert Life
states with up to 90% accuracy in a few seconds.

Robot Localization. In robotics, simultaneous mapping and localization (SLAM) refers to the
problem of constructing a representation of the map of an environment and the position of the robot
within the map based on measurements (often, LIDAR-based measurements). If the map is given,
the problem is called localization (Fig. 20a): a robot maneuvers through a known space, and receives
measurements of distance to the walls. The goal is to construct a probabilistic representation of
where the robot is located. In this case study, we use GenJAX to write a model for robot localization,
with Gaussian drift dynamics and a simulated LIDAR measurement. Given a sequence of LIDAR
measurements over time as observations, we can then constrain the model to produce a posterior
over robot locations. In Fig. 20b, we develop several sequential Monte Carlo algorithms using
GenJAX’s programmable inference abstractions.

o The bootstrap filter [34] is sequential Monte Carlo where the prior (from the model) is used as
the proposal for the latent position of the robot.

e SMC + HMC adds HMC [67] moves to the bootstrap filter. These moves are applied to the
particle collection after resampling.

e SMC + Locally Optimal uses a smart proposal for the latent position of the robot based on
enumerative grids: the logic of the proposal is to enumerate a grid in position space, and evaluate
each position on the grid against the observation likelihood. The maximum likelihood grid point
is selected, and then a proposal for the position is sampled from a normal distribution around
that point.

SMC supports natural vectorization over particles. In our experiments, from the standpoint of
efficiency and accuracy, the best algorithm is locally optimal SMC, which adds another layer of
vectorization within the custom proposal. In the locally optimal grid approximation proposal,
the likelihood grid evaluations can be fully vectorized. Note that the model already features
vectorization: the LIDAR measurement model is vectorized as well. The development of this
algorithm illustrates the power of exposing vmap as an idiom: each of these opportunities for
vectorization (in the model, in the locally optimal proposal, and across the particle collection) are
convenient to program against with vmap, and lead to a highly efficient inference algorithm which
can accurately track the 2D robot’s location within the map in milliseconds.

6 Related Work

Probabilistic Programming. Early probabilistic languages such as Church [32], WebPPL [33], Ven-
ture [60, 61], and Anglican [82] prioritized modeling expressiveness over GPU inference. Domain-
specific probabilistic programming languages with GPU backends include Augur [85], which

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:25

t=11 t=16

® True distances
Noisy observations
® Robot

o

(a) The robot localization problem. Given a fixed map of the area, a robot must localize its location using
simulated LIDAR measurements: rays are cast out from the robot’s location, and a noisy measurements of
the distance to any intersecting object are returned. Given these measurements and the known map, the goal
is to construct a probability distribution over the location of the robot.

Bootstrap filter SMC (N=200) SMC (N=5)
(N=200) + HMC (K=25) + Locally Optimal (L=25)

% M g
3

1 2.4£0.0ms

51.4+2.7ms

13513::2.4ms

0 20 40 60 80 100 120 140
Time (milliseconds)

(b) Comparison between SMC variants. SMC can be customized in various ways: custom proposals and
MCMC moves can be used to improve the accuracy of the algorithm. The best algorithm (SMC + Locally
Optimal) uses a custom proposal which uses vmap to evaluate positions on a grid using the data likelihood,
and then samples from a normal around the most promising grid point. Note that this custom inference
program is faster and more accurate (orange) than naive scale-up of a vectorized bootstrap filter (blue), and
faster and more accurate than a hybrid of SMC with Hamiltonian Monte Carlo rejuvenation (green).

Fig. 20. Robot localization using programmable sequential Monte Carlo. (a) Problem setup showing robot
trajectory through multi-room environment with 8-ray LIDAR sensor model for distance-based localization.
(b) Comparison of three SMC variants: Bootstrap filter, SMC+HMC, and SMC+Locally Optimal, showing
particle approximation evolution and execution time performance.

compiles Bayesian networks to data-parallel code; RootPPL [59], which targets CUDA for phy-
logenetic inference; Birch [65], which supports delayed sampling for particle filters and CUDA
execution; and Stan [14], which restricts models to fixed control flow for HMC.

GenJAX is an embedded probabilistic programming framework, leveraging JAX for differentiable
computation and JIT compilation for good performance on GPUs. In this respect, GenJAX is similar
to Edward/Edward2 [83, 84], PyMC3 [77], Pyro [8], and NumPyro [69], which respectively leverage
TensorFlow, PyTorch, and JAX to execute vectorized inference code on GPUs. Inference families
including Monte Carlo methods (for instance, Hamiltonian Monte Carlo [67]) and variational

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:26 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

inference methods [9, 46, 48, 71] often feature embarrassingly parallel subroutines, and benefit
from vectorization and GPU acceleration.

Compared to Pyro and NumPyro, GenJAX’s design is aimed at improving expressivity while
retaining vectorization opportunities. GenJAX’s cond construct is an example of this philosophy:
branches to cond are restricted to be valid GenJAX generative functions, which are less expressive
than Pyro’s modeling language. However, cond supports stochastic branching and is fully compatible
with vmap. In contrast, neither NumPyro nor Pyro support a stochastic branching primitive. Instead,
users of these systems emulate stochastic branching manually, by inlining branches into model code,
and using masking operations on distributions. Also, Pyro’s plate construct for model vectorization
is implemented as an effect handler that alters the meaning of array operations. In contrast, by using
an approach based on program transformation, GenJAX allows users to freely nest vectorization of
models and inference algorithms, and use ordinary JAX constructs within models for stochastic
branching. GenJAX also supports vectorized implementations of generative functions [19], and
custom inference programs that interleave automated and hand-optimized implementations of
the generative function interface. The benchmarks in this paper show GenJAX delivers these
capabilities while maintaining competitive performance to NumPyro and introducing low overhead
relative to hand-optimized JAX. The programming model for users of GenJAX is similar to Pyro
and NumPyro: users are required to make use of vmap in their code to benefit from vectorization.
Recent work [55] explores automating vectorization of sequential data-dependent loops without
requiring user annotation using speculative execution, iterative correction, and fixed-point checks:
this work could be integrated into GenJAX via a new type of generative function whose internal
logic uses vmap to implement this vectorization technique.

Data-Parallel and Array Programming. Our work builds directly on JAX [26], which itself builds
on foundational languages for data-parallel array programming. NESL [10] introduced the idea that
nested parallelism can make use of program transformations: flattening converts nested operations
like {sum(a) : a in arrays} into operations on flat vectors, an idea reincarnated into JAX in
the form of JAX’s Pytree interface. APL [43] and J [40] introduced rank polymorphism to array
programming: operations work uniformly across dimensions, which has been translated into axis-
specified reduction primitives in NumPy [37] and JAX. Modern array programming frameworks in
Python (NumPy [37], TensorFlow [1], PyTorch [68], JAX [26]) have brought significant attention
to array programming from data science and artificial intelligence research. JAX’s vmap inherits
NESL’s transformation-based parallelism but focuses on deterministic computation.

Partial Evaluation and Staged Computation. Partial evaluation [27, 44, 45, 62] and multi-stage
programming [80] have played a significant role in the development of techniques for program
tracing, which JAX relies upon to support program transformation and compositional interpreters
as program transformers. GenJAX relies upon JAX’s support for program tracing to extend vmap
to work on probabilistic constructs. Additionally, JAX’s program tracing is used to eliminate the
overhead of GenJAX’s lightweight effect handler implementations of the generative function
interface. Several PPLs have made use of partial evaluation to improve the accuracy or runtime of
inference: Hakaru [66] can partially evaluate a subset of its programs to closed form when possible,
Gen [19] supports trace data structure specialization on the structure of generative functions in its
static modeling language.

Formalization of Sound Bayesian Inference. Vectorization poses interesting questions for sound-

ness: operations which are correct pointwise should preserve measure-theoretic properties when
lifted to operate on arrays. In our formal model and soundness results, we rely on the quasi-Borel

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:27

space framework [39] to construct our denotational semantics. Several works influenced our devel-
opment: Borgstrém et al. [11] establishes lambda-calculus foundations for universal PPLs; Scibior
et al. [78] validates that transformations preserve Bayesian soundness. Our system extends vmap to
work with probabilistic program traces and programmable inference interfaces, and we rely on
several prior semantic developments, including Lew et al. [50], which introduced trace typing for
ensuring proposal-model alignment in programmable inference algorithms, and Lew et al. [54],
which developed a denotational semantics model for programmable inference with traces, using a
graded monad similar to ours to track a trace’s shape. We build on these works by giving a model
for how vectorization interacts with programmable inference features like tracing. Following works
like 7, 42, 52, 54], our formal developments also rely on logical relations arguments to reason about
the correctness of probabilistic program transformations.

7 Conclusion

This work presents GenJAX, a language and compiler for vectorized probabilistic programming
with programmable inference. This system integrates vmap with programmable inference features:
we extend vmap support to generative functions, including support for vectorization using vmap of
probabilistic program traces, stochastic branching, and programmable inference interfaces. Bench-
marks show this approach yields low overhead relative to hand-optimized JAX, and simultaneously
delivers greater expressiveness and competitive performance with other probabilistic programming
systems targeting modern accelerators.

Future Work. We comment on several avenues for future work:

e Vectorized inference diagnostics. By automating the vectorized implementation of nested
models and inference algorithms, GenJAX makes it easy to experiment with parallel implemen-
tations of custom Monte Carlo estimators of a broad range of information-theoretic quantities
derived from probabilistic programs [18, 22, 73, 75], including KL divergence between inference
algorithms and the conditional mutual information among subsets of latent variables. Although
computationally intensive on CPUs, these estimators are comprised of nested, massively parallel
computations, and may become more practical and widespread given suitable automation.

e Spatial or geometric probabilistic programs. We expect that GenJAX’s support for array
programming and programmable probabilistic inference may be well-suited for spatial comput-
ing applications. Domains such as robotics, autonomous navigation, computational imaging,
and scientific simulation increasingly require sophisticated probabilistic reasoning over high-
dimensional spatial data—including LiDAR point clouds, depth images, and other spatial data
types. Probabilistic programming applications in these domains naturally involve computa-
tions that manipulate multi-dimensional arrays. GenJAX’s design is uniquely suited to support
practitioners writing these types of probabilistic programs, and provides useful vectorization
automation and support for compilation to efficient GPU implementations.

Data-Availability Statement

The artifact associated with this paper is available on Zenodo [6]. The source code is available at
https://github.com/probcomp/genjax [63].

Acknowledgments

The authors acknowledge Arijit Dasgupta, Andrew Bolton, Jodo Loula, Nishad Gothoskar, Matin
Ghavami, Eric Li, Ian Limarta, Jay Pottharst, Jack Rusher, Matt Huebert, David R. Maclver, Mirko
Klukas, Fabian Zaiser, Ben Lee, Brian Patton, Jacob Burnhim, Christopher Suter, Urs Kgster, Nathan
Cloos, Pierre Glaser, and Alex Hiser for assisting in the development of our system. We acknowledge

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://github.com/probcomp/genjax

87:28

Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Sharad Vikram and Matthew Johnson for useful discussions about JAX. We acknowledge Sam Witty,
Tan Zhi-Xuan, Timothy O’Donnell, and Josh Tenenbaum for helpful discussions concerning our
work. We acknowledge Karen Laska Pierro for support during preparation of this work. This work
was supported in part by CoCoSys, one of seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

References

(1]

—
Do
—

[10]
[11]

[12]

[13]

[14]

[15]

[16]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. doi:10.48550/arXiv.1603.04467 Software available from tensorflow.org.

Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of Computer Programs, Second Edition. MIT
Press, Cambridge, MA, USA.

Alwa Alanqary, Gloria Z. Lin, Joie Le, Tan Zhi-Xuan, Vikash Mansinghka, and Josh Tenenbaum. 2021. Modeling the
Mistakes of Boundedly Rational Agents Within a Bayesian Theory of Mind. Proceedings of the Annual Meeting of the
Cognitive Science Society 43, 43 (2021). doi:10.48550/arXiv.2106.13249

Chris L. Baker, Rebecca R. Saxe, and Joshua B. Tenenbaum. 2011. Bayesian Theory of Mind: Modeling Joint Belief-Desire
Attribution. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Cognitive Science Society,
Boston, MA, USA, 2469-2474. https://escholarship.org/uc/item/5rk7z59q

Atilim Giines Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk,
Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle
Cranmer, Prabhat, and Frank Wood. 2019. Etalumis. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’19). Association for Computing Machinery, New York, NY, USA,
1-24. doi:10.1145/3295500.3356180

McCoy R. Becker, Mathieu Huot, George Matheos, Xiaoyan Wang, Karen Chung, Colin Smith, Sam Ritchie, Alexander K.
Lew, Martin Rinard, and Vikash K. Mansinghka. 2025. GenJAX: Probabilistic Programming with Vectorized Programmable
Inference. doi:10.5281/zenodo.17594132

McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard, and Vikash K.
Mansinghka. 2024. Probabilistic Programming with Programmable Variational Inference. Proc. ACM Program. Lang. 8,
PLDI (June 2024), 2123-2147. doi:10.1145/3656463

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal Probabilistic Programming.
Journal of Machine Learning Research 20, 28 (2018), 1-6. doi:10.48550/arXiv.1810.09538

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2017. Variational Inference: A Review for Statisticians. J. Amer.
Statist. Assoc. 112, 518 (2017), 859-877. doi:10.1080/01621459.2017.1285773

Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco Zagha. 1993. Implementation
of a portable nested data-parallel language. J. Parallel and Distrib. Comput. 21, 1 (1993), 4-14. doi:10.1006/jpdc.1994.1031
Johannes Borgstrém, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for
universal probabilistic programming. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming. ACM, New York, NY, USA, 33-46. doi:10.1145/2951913.2951942

Monica F. Bugallo, Victor Elvira, Luca Martino, David Luengo, Joaquin Miguez, and Petar M. Djuric. 2017. Adaptive
Importance Sampling: The past, the present, and the future. IEEE Signal Processing Magazine 34, 4 (July 2017), 60-79.
doi:10.1109/MSP.2017.2699226

Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin, and Christian P. Robert. 2008. Adaptive importance
sampling in general mixture classes. Statistics and Computing 18, 4 (Dec. 2008), 447-459. doi:10.1007/s11222-008-9059-x
Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical
Software 76, 1 (2017), 1-32. doi:10.18637/jss.v076.101

Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cedegao E. Zhang,
Tan Zhi-Xuan, Mark Ho, Vikash Mansinghka, Adrian Weller, Joshua B. Tenenbaum, and Thomas L. Griffiths. 2024.
Building Machines that Learn and Think with People. doi:10.48550/arXiv.2408.03943 arXiv:2408.03943 [cs].

Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua B. Tenenbaum, Tomas Lozano-Pérez,
and Leslie Pack Kaelbling. 2024. Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.2106.13249
https://escholarship.org/uc/item/5rk7z59q
https://doi.org/10.1145/3295500.3356180
https://doi.org/10.5281/zenodo.17594132
https://doi.org/10.1145/3656463
https://doi.org/10.48550/arXiv.1810.09538
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1006/jpdc.1994.1031
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1109/MSP.2017.2699226
https://doi.org/10.1007/s11222-008-9059-x
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.48550/arXiv.2408.03943

Probabilistic Programming with Vectorized Programmable Inference 87:29

In Robotics: Science and Systems XX, Delft, The Netherlands, July 15-19, 2024, Dana Kulic, Gentiane Venture, Kostas E.
Bekris, and Enrique Coronado (Eds.). Robotics: Science and Systems Foundation, Delft, The Netherlands, 118:1-118:9.
do0i:10.15607/RSS.2024.XX.118
Marco F. Cusumano-Towner, Alexander K. Lew, and Vikash K. Mansinghka. 2020. Automating Involutive MCMC
using Probabilistic and Differentiable Programming. CoRR abs/2007.09871 (July 2020). doi:10.48550/arXiv.2007.09871
arXiv:2007.09871 [cs.LG]
Marco F. Cusumano-Towner and Vikash K. Mansinghka. 2017. AIDE: An algorithm for measuring the accuracy of prob-
abilistic inference algorithms. CoRR abs/1705.07224 (Nov. 2017). doi:10.48550/arXiv.1705.07224 arXiv:1705.07224 [cs.Al]
Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: a general-purpose
probabilistic programming system with programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, New York, NY, USA, 221-236. doi:10.1145/3314221.3314642
Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68, 3 (June 2006), 411-436. doi:10.1111/§.1467-9868.2006.00553.x
[21] A.P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data Via the EM Algorithm.
Journal of the Royal Statistical Society: Series B (Methodological) 39, 1 (Sept. 1977), 1-22. doi:10.1111/j.2517-6161.1977.
th01600.x
Justin Domke. 2021. An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over
Simulations. CoRR abs/2103.01030 (Feb. 2021). doi:10.48550/arXiv.2103.01030
Arnaud Doucet, Nando de Freitas, and Neil Gordon (Eds.). 2001. Sequential Monte Carlo Methods in Practice. Springer-
Verlag, New York. doi:10.1007/978-1-4757-3437-9
[24] Hugh Durrant-Whyte and Tim Bailey. 2006. Simultaneous localization and mapping: part I. IEEE Robotics & Automation
Magazine 13, 2 (2006), 99-110. doi:10.1109/MRA.2006.1638022
Shai Fine, Yoram Singer, and Naftali Tishby. 1998. The Hierarchical Hidden Markov Model: Analysis and Applications.
Machine Learning 32, 1 (July 1998), 41-62. doi:10.1023/A:1007469218079
Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling machine learning programs via high-level
tracing. SysML 2018.
Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process, Revisited. Higher-Order and Symbolic Computa-
tion 12, 4 (Dec. 1999), 377-380. doi:10.1023/A:1010043619517
Martin Gardner. 1970. The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific American 223,
4(1970), 120-123. doi:10.1038/scientificamerican1070-120
Stuart Geman and Donald Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 6 (1984), 721-741. doi:10.1109/TPAML
1984.4767596
Walter R. Gilks and Carlo Berzuini. 2001. Following a Moving Target: Monte Carlo Inference for Dynamic Bayesian
Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63, 1 (2001), 127-146. doi:10.1111/1467-
9868.00280
Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. 2011. Parallel Gibbs Sampling: From Colored
Fields to Thin Junction Trees. In AISTATS (JMLR Proceedings, Vol. 15). JMLR.org, Fort Lauderdale, FL, USA, 324-332.
https://proceedings.mlr.press/v15/gonzalez11a.html
Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a
language for generative models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. AUAL
Press, Corvallis, OR, USA, 220-229. doi:10.48550/arXiv.1206.3255
[33] Noah D. Goodman and Andreas Stuhlm"uller. 2014. The Design and Implementation of Probabilistic Programming
Languages. http://dippl.org Electronic; retrieved 2025-07-13.
[34] N.]J. Gordon, D. J. Salmond, and A. F. M. Smith. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state
estimation. IEE Proceedings F (Radar and Signal Processing) 140, 2 (1993), 107-113. doi:10.1049/ip-f-2.1993.0015
Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok, Austin Garrett, Joshua B.
Tenenbaum, Dan Gutfreund, and Vikash K. Mansinghka. 2021. 3DP3: 3D Scene Perception via Probabilistic Program-
ming. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), Vol. 34. Curran Associates, Inc., Virtual.
doi:10.48550/arXiv.2111.00312
Peter J. Green. 1995. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.
Biometrika 82, 4 (1995), 711-732. doi:10.2307/2337340 Publisher: [Oxford University Press, Biometrika Trust].
Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.
van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernindez del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
2020. Array programming with NumPy. Nature 585, 7825 (2020), 357-362. doi:10.1038/s41586-020-2649-2

[17

—

(18

—

(19

—

[20

[t}

[22

—

[23

—

[25

[

[26

—

[27

—

[28

[t

[29

—

[30

—

(31

—

(32

—

[35

—

[36

—_

[37

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.15607/RSS.2024.XX.118
https://doi.org/10.48550/arXiv.2007.09871
https://arxiv.org/abs/2007.09871
https://doi.org/10.48550/arXiv.1705.07224
https://arxiv.org/abs/1705.07224
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.48550/arXiv.2103.01030
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1023/A:1007469218079
https://doi.org/10.1023/A:1010043619517
https://doi.org/10.1038/scientificamerican1070-120
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1111/1467-9868.00280
https://doi.org/10.1111/1467-9868.00280
https://proceedings.mlr.press/v15/gonzalez11a.html
https://doi.org/10.48550/arXiv.1206.3255
http://dippl.org
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.48550/arXiv.2111.00312
https://doi.org/10.2307/2337340
https://doi.org/10.1038/s41586-020-2649-2

87:30 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

[38]

[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

W. K. Hastings. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57, 1
(1970), 97-109. doi:10.2307/2334940 Publisher: [Oxford University Press, Biometrika Trust].

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order
probability theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, Reykjavik,
Iceland, 1-12. doi:10.1109/LICS.2017.8005137

Roger KW. Hui, Kenneth E. Iverson, Eugene E. McDonnell, and Arthur T. Whitney. 1990. APL? APL Quote Quad 20, 4
(1990). http://www.jsoftware.com/papers/J1990.htm Proceedings of APL90, Copenhagen.

Mathieu Huot, Matin Ghavami, Alexander K. Lew, Ulrich Schaechtle, Cameron E. Freer, Zane Shelby, Martin C. Rinard,
Feras A. Saad, and Vikash K. Mansinghka. 2024. GenSQL: A Probabilistic Programming System for Querying Generative
Models of Database Tables. Proc. ACM Program. Lang. 8, PLDI (June 2024), 790-815. doi:10.1145/3656409

Mathieu Huot, Sam Staton, and Matthijs Vakar. 2020. Correctness of automatic differentiation via diffeologies and
categorical gluing. In Foundations of Software Science and Computation Structures (FoSSaCS 2020) (Lecture Notes in
Computer Science, Vol. 12077). Springer, Cham, Switzerland, 319-338. doi:10.1007/978-3-030-45231-5_17

Kenneth E. Iverson. 1962. A Programming Language. John Wiley and Sons, New York, NY, USA.

Neil D. Jones. 1996. An introduction to partial evaluation. Comput. Surveys 28, 3 (Sept. 1996), 480-503. doi:10.1145/
243439.243447

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Prentice
Hall, Englewood Cliffs, NJ, USA.

Michael L. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999. An Introduction to Variational
Methods for Graphical Models. Machine Learning 37, 2 (1999), 183-233. do0i:10.1023/A:1007665907178

Chang-Jin Kim. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60, 1 (Jan. 1994), 1-22.
doi:10.1016/0304-4076(94)90036- 1

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. doi:10.48550/
arXiv.1312.6114

Alexander K. Lew, Monica Agrawal, David Sontag, and Vikash K. Mansinghka. 2020. PClean: Bayesian Data Cleaning
at Scale with Domain-Specific Probabilistic Programming. In International Conference on Artificial Intelligence and
Statistics. PMLR, Virtual Event, 1927-1935. d0i:10.48550/arXiv.2007.11838

Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2019.
Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proc. ACM
Program. Lang. 4, POPL (2019), 19:1-19:32. do0i:10.1145/3371087

Alexander K. Lew, Matin Ghavamizadeh, Martin C. Rinard, and Vikash K. Mansinghka. 2023. Probabilistic Programming
with Stochastic Probabilities. Proc. ACM Program. Lang. 7, PLDI (2023), 1708-1732. doi:10.1145/3591290

Alexander K. Lew, Mathieu Huot, Sam Staton, and Vikash K. Mansinghka. 2023. ADEV: Sound Automatic Differentiation
of Expected Values of Probabilistic Programs. Proc. ACM Program. Lang. 7, POPL (Jan. 2023), 121-153. doi:10.1145/
3571198

Alexander K. Lew, George Matheos, Tan Zhi-Xuan, Matin Ghavamizadeh, Nishad Gothoskar, Stuart Russell, and
Vikash K. Mansinghka. 2023. SMCP3: Sequential Monte Carlo with Probabilistic Program Proposals. In International
Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau de Congressos, Valencia, Spain (Proceedings of
Machine Learning Research, Vol. 206), Francisco J. R. Ruiz, Jennifer G. Dy, and Jan-Willem van de Meent (Eds.). PMLR,
Valencia, Spain, 7061-7088. https://proceedings.mlr.press/v206/lew23a.html

Alexander K. Lew, Eli Sennesh, Jan-Willem Van De Meent, and Vikash K. Mansinghka. 2023. Semantics of Probabilistic
Program Traces. In LAFI 2023 at POPL (Boston, MA). ACM, Boston, MA, USA. https://popl23.sigplan.org/details/lafi-
2023-papers/1/Semantics-of-Probabilistic-Program-Traces

Sangho Lim, Hyoungjin Lim, Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2025. Optimising Density Computations
in Probabilistic Programs via Automatic Loop Vectorisation. doi:10.48550/arXiv.2511.11070 arXiv:2511.11070 [cs.PL]
Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski. 2017. Bayesian
Learning and Inference in Recurrent Switching Linear Dynamical Systems. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. PMLR, Fort Lauderdale, FL, USA, 914-922. https://proceedings.mlr.
press/v54/linderman17a.html ISSN: 2640-3498.

Benjamin Lipkin, Benjamin LeBrun, Jacob Hoover Vigly, Jodo Loula, David R. Maclver, Li Du, Jason Eisner, Ryan
Cotterell, Vikash Mansinghka, Timothy J. O’'Donnell, Alexander K. Lew, and Tim Vieira. 2025. Fast Controlled
Generation from Language Models with Adaptive Weighted Rejection Sampling. doi:10.48550/arXiv.2504.05410
arXiv:2504.05410 [cs].

[58] Joao Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya Emara, Marjorie

Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew, Tim Vieira, and Timothy J. O’Donnell.
2025. Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo. CoRR abs/2504.13139

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.2307/2334940
https://doi.org/10.1109/LICS.2017.8005137
http://www.jsoftware.com/papers/J1990.htm
https://doi.org/10.1145/3656409
https://doi.org/10.1007/978-3-030-45231-5_17
https://doi.org/10.1145/243439.243447
https://doi.org/10.1145/243439.243447
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1016/0304-4076(94)90036-1
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.2007.11838
https://doi.org/10.1145/3371087
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3571198
https://doi.org/10.1145/3571198
https://proceedings.mlr.press/v206/lew23a.html
https://popl23.sigplan.org/details/lafi-2023-papers/1/Semantics-of-Probabilistic-Program-Traces
https://popl23.sigplan.org/details/lafi-2023-papers/1/Semantics-of-Probabilistic-Program-Traces
https://doi.org/10.48550/arXiv.2511.11070
https://arxiv.org/abs/2511.11070
https://proceedings.mlr.press/v54/linderman17a.html
https://proceedings.mlr.press/v54/linderman17a.html
https://doi.org/10.48550/arXiv.2504.05410

Probabilistic Programming with Vectorized Programmable Inference 87:31

(2025). doi:10.48550/arXiv.2504.13139 arXiv:2504.13139
[59] Daniel Lundén, Joey Ohman, Jan Kudlicka, Viktor Senderov, Fredrik Ronquist, and David Broman. 2022. Compiling
Universal Probabilistic Programming Languages with Efficient Parallel Sequential Monte Carlo Inference. In Program-
ming Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held as Part of ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer,
Munich, Germany, 29-56. doi:10.1007/978-3-030-99336-8_2
Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-order probabilistic programming platform
with programmable inference. CoRR abs/1404.0099 (2014). doi:10.48550/arXiv.1404.0099 arXiv:1404.0099 [cs.AlI]
Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018.
Probabilistic programming with programmable inference. ACM SIGPLAN Notices 53, 4 (2018), 603-616. doi:10.1145/
3296979.3192409
Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. partial evaluation: comparing meta-compilation approaches
for self-optimizing interpreters. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015). Association for Computing Machinery, New York,
NY, USA, 821-839. doi:10.1145/2814270.2814275
MIT Probabilistic Computing Project. 2025. GenJAX: Source Code Repository. https://github.com/probcomp/genjax
Kevin P. Murphy and Mark A. Paskin. 2001. Linear-time inference in Hierarchical HMMs. In Advances in Neural
Information Processing Systems 14: NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada, Thomas G.
Dietterich, Suzanna Becker, and Zoubin Ghahramani (Eds.). MIT Press, Vancouver, BC, Canada, 833-840. https:
//proceedings.neurips.cc/paper/2001/hash/aebf7782a3d445f43cf30ee2c0d84dee- Abstract.html
Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas Schén. 2018. Delayed Sampling and
Automatic Rao-Blackwellization of Probabilistic Programs. In Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 84). PMLR, Lanzarote, Canary
Islands, 1037-1046. doi:10.48550/arXiv.1708.07787
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic
inference by program transformation in Hakaru (system description). In International Symposium on Functional and
Logic Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer,
Cham, Switzerland, 62-79. doi:10.1007/978-3-319-29604-3_5
Radford M Neal. 2011. MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo. Chapman and
Hall/CRC, Boca Raton, FL, USA, 113-162. doi:10.48550/arXiv.1206.1901
[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Z. Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). Curran Associates, Inc., Vancouver, BC, Canada, 8024-8035. doi:10.48550/arXiv.1912.01703
[69] Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable Effects for Flexible and Accelerated Probabilistic
Programming in NumPyro. CoRR abs/1912.11554 (2019). doi:10.48550/arXiv.1912.11554 arXiv:1912.11554 [cs.LG]
Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-performance CPU programming. In 2012
Innovative Parallel Computing (InPar). IEEE, San Jose, CA, USA, 1-13. doi:10.1109/InPar.2012.6339601
Rajesh Ranganath, Sean Gerrish, and David M. Blei. 2014. Black Box Variational Inference. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 33). PMLR, Reykjavik, Iceland, 814-822. doi:10.48550/arXiv.1401.0118
Feras Saad, Brian Patton, Matthew Douglas Hoffman, Rif A. Saurous, and Vikash Mansinghka. 2023. Sequential Monte
Carlo Learning for Time Series Structure Discovery. In International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, Honolulu, HI, USA,
29473-29489. doi:10.48550/arXiv.2307.09607
Feras A. Saad, Marco Cusumano-Towner, and Vikash K. Mansinghka. 2022. Estimators of Entropy and Infor-
mation via Inference in Probabilistic Models. CoRR abs/2202.12363 (April 2022). doi:10.48550/arXiv.2202.12363
arXiv:2202.12363 [cs.LG]
Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019.
Bayesian synthesis of probabilistic programs for automatic data modeling. Proc. ACM Program. Lang. 3, POPL (Jan.
2019), 37:1-37:32. d0i:10.1145/3290350
Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, and Vikash K. Mansinghka. 2019. A Family of Exact
Goodness-of-Fit Tests for High-Dimensional Discrete Distributions. CoRR abs/1902.10142 (Feb. 2019). doi:10.48550/

[60

—

[61

—

[62

—

[63
[64

[l i

[65

[

[66

—

[67

—

[70

[t

(71

—

[72

—

[73

—

[74

[l

[75

—

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.48550/arXiv.2504.13139
https://arxiv.org/abs/2504.13139
https://doi.org/10.1007/978-3-030-99336-8_2
https://doi.org/10.48550/arXiv.1404.0099
https://arxiv.org/abs/1404.0099
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/2814270.2814275
https://github.com/probcomp/genjax
https://proceedings.neurips.cc/paper/2001/hash/aebf7782a3d445f43cf30ee2c0d84dee-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/aebf7782a3d445f43cf30ee2c0d84dee-Abstract.html
https://doi.org/10.48550/arXiv.1708.07787
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.48550/arXiv.1206.1901
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.11554
https://arxiv.org/abs/1912.11554
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.48550/arXiv.1401.0118
https://doi.org/10.48550/arXiv.2307.09607
https://doi.org/10.48550/arXiv.2202.12363
https://arxiv.org/abs/2202.12363
https://doi.org/10.1145/3290350
https://doi.org/10.48550/arXiv.1902.10142
https://doi.org/10.48550/arXiv.1902.10142

87:32 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

arXiv.1902.10142 arXiv:1902.10142 [cs.LG]

[76] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel random numbers: as easy as 1, 2, 3. In
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11).
Association for Computing Machinery, New York, NY, USA, 1-12. doi:10.1145/2063384.2063405

[77] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using
PyMC3. Peer Computer Science 2 (April 2016), e55. doi:10.7717/peerj-cs.55 Publisher: Peer] Inc..

[78] Adam Scibior, Ohad Kammar, Matthijs Vakar, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,

Chris Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proc. ACM

Program. Lang. 2, POPL (2017), 60:1-60:29. doi:10.1145/3158148

Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, and Jan-Willem van de Meent. 2021. Learning proposals for

probabilistic programs with inference combinators. In Proceedings of the Thirty-Seventh Conference on Uncertainty in

Artificial Intelligence. PMLR, Virtual, 1056-1066. doi:10.48550/arXiv.2103.00668 ISSN: 2640-3498.

Walid Taha. 1999. Multi-stage programming; its theory and applications. In Applied Semantics Summer School. Springer,

Caminha, Portugal, 145-174.

[81] Luke Tierney. 1994. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics 22, 4 (Dec. 1994),

1701-1728. doi:10.1214/a0s/1176325750 Publisher: Institute of Mathematical Statistics.

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and Implementation of

Probabilistic Programming Language Anglican. ACM Transactions on Programming Languages and Systems 40, 4 (2016),

1-46. doi:10.1145/3064899

[83] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017. Deep
Probabilistic Programming. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, Toulon, France. doi:10.48550/arXiv.1701.03757

[84] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei. 2016. Edward: A
library for probabilistic modeling, inference, and criticism. CoRR abs/1610.09787 (2016). doi:10.48550/arXiv.1610.09787
arXiv:1610.09787 [stat.ML]

[85] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam Craig Pocock, Stephen J. Green, and Guy L. Steele Jr.
2014. Augur: Data-Parallel Probabilistic Modeling. In Advances in Neural Information Processing Systems 27 (NIPS 2014).
Curran Associates, Inc., Montréal, Canada, 2600-2608. doi:10.48550/arXiv.1312.3613

[86] David Wingate, Andreas Stuhlmueller, and Noah Goodman. 2011. Lightweight Implementations of Probabilistic

Programming Languages Via Transformational Compilation. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 770-778.

https://proceedings.mlr.press/v15/wingatella.html ISSN: 1938-7228.

Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mansinghka, Jacob Andreas, and Joshua B.

Tenenbaum. 2023. From Word Models to World Models: Translating from Natural Language to the Probabilistic

Language of Thought. CoRR abs/2306.12672 (2023). doi:10.48550/arXiv.2306.12672 arXiv:2306.12672 [cs.CL]

Lance Ying, Tan Zhi-Xuan, Lionel Wong, Vikash Mansinghka, and Joshua Tenenbaum. 2024. Grounding Language

about Belief in a Bayesian Theory-of-Mind. doi:10.48550/arXiv.2402.10416 arXiv:2402.10416 [cs].

[89] Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum, and Vikash Mansinghka. 2020. Online Bayesian Goal

Inference for Boundedly Rational Planning Agents. In Advances in Neural Information Processing Systems, Vol. 33.

Curran Associates, Inc., Virtual, 19238-19250. do0i:10.48550/arXiv.2006.07532

Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lazaro-Gredilla, Dileep

George, and Vikash K. Mansinghka. 2023. 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for Robust

6D Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Paris,

France, 21559-21569. doi:10.1109/ICCV51070.2023.01977

[79

—

[80

—

[82

—

[87

—

[88

—

[90

[t

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.48550/arXiv.1902.10142
https://doi.org/10.48550/arXiv.1902.10142
https://doi.org/10.48550/arXiv.1902.10142
https://arxiv.org/abs/1902.10142
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1145/3158148
https://doi.org/10.48550/arXiv.2103.00668
https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1145/3064899
https://doi.org/10.48550/arXiv.1701.03757
https://doi.org/10.48550/arXiv.1610.09787
https://arxiv.org/abs/1610.09787
https://doi.org/10.48550/arXiv.1312.3613
https://proceedings.mlr.press/v15/wingate11a.html
https://doi.org/10.48550/arXiv.2306.12672
https://arxiv.org/abs/2306.12672
https://doi.org/10.48550/arXiv.2402.10416
https://doi.org/10.48550/arXiv.2006.07532
https://doi.org/10.1109/ICCV51070.2023.01977

	Abstract
	1 Introduction
	2 Overview
	2.1 Vectorizing Generative Functions with vmap
	2.2 Vectorized Programmable Inference
	2.3 Improving Robustness Using Stochastic Branching
	2.4 Improving Inference Accuracy Using Programmable Inference

	3 Formal Model
	3.1 Syntax of Lambda GEN
	3.2 Denotational Semantics
	3.3 Programmable Inference
	3.4 Vectorization Program Transform
	3.5 Stochastic Branching

	4 Implementation
	4.1 Probabilistic Programming with Programmable Inference
	4.2 Vectorization
	4.3 Stochastic Branching
	4.4 Statically Bounded Loops
	4.5 Execution on GPU

	5 Evaluation
	5.1 Performance Survey Evaluation
	5.2 High-Dimensional Vectorized Inference

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

