
Probabilistic Programming with Vectorized Programmable
Inference
MCCOY R. BECKER∗,Massachusetts Institute of Technology, USA

MATHIEU HUOT∗,Massachusetts Institute of Technology, USA

GEORGE MATHEOS,Massachusetts Institute of Technology, USA

XIAOYAN WANG,Massachusetts Institute of Technology, USA

KAREN CHUNG,Massachusetts Institute of Technology, USA

COLIN SMITH,Massachusetts Institute of Technology, USA

SAM RITCHIE,Massachusetts Institute of Technology, USA

RIF A. SAUROUS, Google, USA
ALEXANDER K. LEW, Yale University, USA
MARTIN C. RINARD,Massachusetts Institute of Technology, USA

VIKASH K. MANSINGHKA,Massachusetts Institute of Technology, USA

We present GenJAX, a new language and compiler for vectorized programmable probabilistic inference. GenJAX

integrates the vectorizing map (vmap) operation from array programming frameworks such as JAX into the

programmable inference paradigm, enabling compositional vectorization of features such as probabilistic

program traces, stochastic branching (for expressing mixture models), and programmable inference interfaces

for writing custom probabilistic inference algorithms. We formalize vectorization as a source-to-source

program transformation on a core calculus for probabilistic programming (𝜆GEN), and prove that it correctly

vectorizes both modeling and inference operations. We have implemented our approach in the GenJAX

language and compiler, and have empirically evaluated this implementation on several benchmarks and

case studies. Our results show that our implementation supports a wide and expressive set of programmable

inference patterns and delivers performance comparable to hand-optimized JAX code.

CCS Concepts: • Theory of computation→ Probabilistic computation; • Computing methodologies→
Machine learning algorithms; Massively parallel algorithms; • Software and its engineering→ Compilers.

Additional Key Words and Phrases: probabilistic programming, vectorization, programmable inference

ACM Reference Format:

McCoy R. Becker, Mathieu Huot, George Matheos, Xiaoyan Wang, Karen Chung, Colin Smith, Sam Ritchie, Rif

A. Saurous, Alexander K. Lew, Martin C. Rinard, and Vikash K. Mansinghka. 2026. Probabilistic Programming

∗
Equal contribution.

Authors’ Contact Information: McCoy R. Becker, Massachusetts Institute of Technology, Cambridge, USA, mccoyb@mit.edu;

Mathieu Huot, Massachusetts Institute of Technology, Cambridge, USA, mhuot@mit.edu; George Matheos, Massachusetts

Institute of Technology, Cambridge, USA, gmatheos@mit.edu; Xiaoyan Wang, Massachusetts Institute of Technology,

Cambridge, USA, xyz@mit.edu; Karen Chung, Massachusetts Institute of Technology, Cambridge, USA, seoyeon@mit.edu;

Colin Smith, Massachusetts Institute of Technology, Cambridge, USA, colin.smith@gmail.com; Sam Ritchie, Massachusetts

Institute of Technology, Cambridge, USA, sam@perceptual.ai; Rif A. Saurous, Google, San Francisco, USA, rif@google.com;

Alexander K. Lew, Yale University, New Haven, USA, alexander.lew@yale.edu; Martin C. Rinard, Massachusetts Institute of

Technology, Cambridge, USA, rinard@mit.edu; Vikash K. Mansinghka, Massachusetts Institute of Technology, Cambridge,

USA, vkm@mit.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART87

https://doi.org/10.1145/3776729

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://orcid.org/0009-0000-1930-8150
https://orcid.org/0000-0002-5294-9088
https://orcid.org/0009-0006-5293-9521
https://orcid.org/0000-0001-7058-4679
https://orcid.org/0009-0008-9993-7675
https://orcid.org/0009-0002-1473-9191
https://orcid.org/0000-0002-0545-6360
https://orcid.org/0000-0002-2877-6957
https://orcid.org/0000-0002-9262-4392
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0003-2507-0833
https://github.com/probcomp/genjax
https://github.com/probcomp/genjax
https://orcid.org/0009-0000-1930-8150
https://orcid.org/0000-0002-5294-9088
https://orcid.org/0009-0006-5293-9521
https://orcid.org/0000-0001-7058-4679
https://orcid.org/0009-0008-9993-7675
https://orcid.org/0009-0002-1473-9191
https://orcid.org/0000-0002-0545-6360
https://orcid.org/0000-0002-2877-6957
https://orcid.org/0000-0002-9262-4392
https://orcid.org/0000-0001-8095-8523
https://orcid.org/0000-0003-2507-0833
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776729

87:2 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

with Vectorized Programmable Inference. Proc. ACM Program. Lang. 10, POPL, Article 87 (January 2026),

32 pages. https://doi.org/10.1145/3776729

1 Introduction
In recent years, probabilistic programming has demonstrated remarkable effectiveness in a range

of application domains, including 3D perception and scene understanding [35, 90], probabilistic

robotics [16], automated data cleaning and analysis [41, 49], particle physics [5], time series structure

discovery [72, 74], test-time control of large language models [57, 58], and cognitive modeling

of theory of mind [3, 4, 15, 87–89]. All of these applications require sophisticated probabilistic

reasoning over complex, structured data and rely on probabilistic programming languages (PPLs)

with programmable inference [7, 8, 19, 51, 61, 79]—the ability to customize probabilistic inference

algorithms through proposals, kernels, and variational families—to improve the quality of posterior

approximation. But fully realizing the benefits that probabilistic programming can deliver often

requires substantial computational resources, as probabilistic inference scales by increasing the

number of likelihood evaluations, sequential Monte Carlo particles, or Markov chain Monte Carlo

chains.

We present GenJAX, a new language and compiler for vectorized programmable probabilis-

tic inference. GenJAX integrates the vectorizing map (vmap) operation from array programming

frameworks such as JAX [26] into the context of probabilistic programming with programmable

inference, enabling the compositional vectorization of features such as probabilistic program traces,

stochastic branching (for expressing mixture models), and programmable inference interfaces. This

vectorization enables the implementation of compute-intensive probabilistic programming and

probabilistic inference operations on modern GPUs, making it possible to deploy the substantial

computational resources that GPUs provide to accelerate large-scale probabilistic inference.

Design Considerations. GenJAX is designed around the interaction between vmap and several

probabilistic programming features that support the implementation of sophisticated models and

inference algorithms:

vmap of simulate of

vmap of model

vmap in Modeling and Inference

Vectorization can apply to

models and inference interfaces

{"a": f32[], "b": f32[]}

trace ∼ P

{"a": f32[N], "b": f32[N]}

trace ∼ vmap{P}

Vectorized Traces

Traces are automatically

structs-of-arrays

𝑋

𝑝 1 − 𝑝

Stochastic Branching

Vectorization supports stochastic

branching on random values

Fig. 1. Computational patterns in vectorizable probabilistic programs. Left: Within models, vectorization can
be used to parallelize conditionally independent computations. Within inference, vectorization can be used to
simulate multiple particles in parallel. vmap should be applicable in both settings. Center: Traces are records
used to represent samples from probabilistic programs. Both vectorized models and vectorized inference
algorithms are designed to work with vectorized (struct-of-array) traces. Right: Probabilistic programs can
branch on random values, and vmap of probabilistic programs should preserve this capability.

• Compositional vectorization. Our target class of probabilistic programs features multiple

vectorizable computational patterns. Examples include computing likelihoods simultaneously on

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.1145/3776729

Probabilistic Programming with Vectorized Programmable Inference 87:3

Generative model code Generative model code

Inference code Inference code

vmap

inference

interfaces

vmap

inference

interfaces

Inference on vectorized models can be implemented

by vectorizing inference (Cor. 3.4).

GenJAX Features

Modeling & inference

Stochastic branching §2,4

Programmable SMC §5.2

Programmable MCMC §5.2

Performance

Struct-of-array traces §2,4

GPU acceleration §4

Efficient abstractions §4

Fig. 2. The design and implementation of GenJAX. Left: GenJAX extends vmap to apply to both generative
models and inference algorithms. Our system implements inference on a vectorized model by vectorizing
inference applied to the model, which is justified by Cor. 3.4. Right: Survey of features in our language and
compiler: usage of these features illustrated in §2 and §5.2, implementation discussed in §4.

many pieces of data (as part of modeling) and evolving collections of particles (sequential Monte

Carlo [20, 23, 30, 53]) or chains (Markov chain Monte Carlo [17, 29, 36, 38, 67, 81]) (as part of

inference). Our integration of vmap must therefore support vectorization of both modeling and

inference code (Fig. 1, left).

• Vectorization of probabilistic program traces. In many systems with programmable inference,

traces [8, 19, 50, 60] are a key datatype: structured record objects used to represent samples. They

are a data lingua franca for Monte Carlo and variational inference: traces allow the order of

random variables in proposals or variational guide programs to be decoupled from the order of

random variables in model programs [84]. Under vectorization by vmap, they support an efficient

vectorized representation (struct-of-array, not array-of-struct) [70] (Fig. 1, center).
• Vectorized stochastic branching. Probabilistic mixture models [21], regime-switching dy-

namics models [25, 47, 56, 64], and adaptive inference algorithms [12, 13] all require stochastic

branching using random values. GenJAX supports stochastic branching while maintaining vec-

torization (Fig. 1, right).

Fig. 2 presents an overview of our design and implementation.

Contributions. This paper makes the following contributions.

(1) GenJAX: high-performance compiler (§4). GenJAX is an open-source compiler that extends

JAX and vmap to support programmable probabilistic inference. Probabilistic programs in Gen-

JAX can be systematically transformed to take advantage of opportunities for vectorization

in both modeling and inference. Our compiler also eliminates the overhead present in many

libraries for programmable inference: we implement simulation and density interfaces using

lightweight effect handlers, and exploit JAX’s support for program tracing [80] to partially

evaluate inference logic away at compile time, leaving only optimized array operations. Our

design maintains full compatibility with JAX’s underlying ecosystem for automatic differen-

tiation (supporting algorithms like programmable variational inference [7, 9, 46, 48, 71]) and

CPU/GPU/TPU compilation.

(2) Formal model: interaction between vmap and programmable inference features (§3).We

develop a formal model characterizing how vmap interacts with probabilistic program traces and

programmable inference interfaces.We introduce 𝜆GEN , a calculus for probabilistic programming

and programmable inference, on top of a core probabilistic array language for stochastic parallel

computations. We define vmap as a program transformation, prove its correctness, and show

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:4 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

how it interacts with programmable inference interfaces to support vectorization of probabilistic

computations and traces.

(3) Empirical evaluation (§5).We evaluate our design and implementation through a series of

benchmarks and case studies:

• Performance comparison:We evaluate the performance characteristics of our design and

implementation. GenJAX achieves near-handcoded JAX performance, and can outperform

existing vectorized and high-performance PPLs and array programming frameworks (JAX [26],

PyTorch [68], Pyro [8], NumPyro [69], and Gen [19]).

• High-dimensional vectorized inference: We explore the performance vs. expressivity

tradeoffs of our design by studying high-dimensional inference problems, including approxi-

mate Game of Life [28] inversion (find the previous 512 x 512 board state which leads to the

observed state) and sequential 2D robot localization with simulated LIDAR measurements. In

both case studies, we use GenJAX to develop sophisticated vectorized inference algorithms,

including vectorized Gibbs sampling and sequential Monte Carlo with vectorized proposals.

Our final GenJAX programs exhibit high approximation accuracy, and run in milliseconds on

consumer-grade GPUs.

Our results demonstrate that vectorization and programmable inference abstractions can be unified

through principled language and compiler design. Our system enables practitioners to write

sophisticated probabilistic programs that compile to high-performance GPU code.

2 Overview
To introduce our language, consider the task of polynomial regression: given a dataset of pairs

(𝑥𝑖 , 𝑦𝑖) ∈ R2
, we wish to infer a polynomial relating 𝑥 and 𝑦. In the following sections, we illustrate

how to solve this problem using generative functions and programmable inference in GenJAX.

2.1 Vectorizing Generative Functions with vmap

Fig. 3 depicts a generative model for quadratic regression. The ultimate goal is to, given a noisy

dataset (𝑥𝑖 , 𝑦𝑖)1≤𝑖≤𝑛 , infer a quadratic function that plausibly governs the relationship between 𝑥

and 𝑦. Our model for this task is defined by composing generative functions, each defined as a @gen-

decorated Python function. The polynomial generative function describes a prior distribution on the

coefficients (𝑎, 𝑏, 𝑐) of the underlying quadratic function. Each coefficient is drawn from a standard

normal distribution. A key feature of GenJAX (shared by many languages with programmable

inference [8, 19, 32, 79, 86]) is that each random choice is assigned a string-valued name, using the

syntax dist @ "name". The polynomial generative function then returns the coefficients as a tuple.

Next, the point generative function models how an individual datapoint y is generated, based on

particular quadratic coefficients (𝑎, 𝑏, 𝑐) and the corresponding input datapoint 𝑥 . It computes the

quadratic function’s value at 𝑥 , then adds a small amount of Gaussian noise. Finally, to model an

entire dataset of points, npoint_curve calls polynomial to generate coefficients, and maps the point
generative function over an input vector 𝑥𝑠 of 𝑥 values, generating a vector of noisy points. This

is our first use of vmap (Fig. 3, L22): we use it to generate multiple 𝑦 values in parallel, exploiting

the fact that the datapoints are generated conditionally independently of one another, given the

coefficients (𝑎, 𝑏, 𝑐). This is an instance of a general pattern that appears in many probabilistic

programs, and is one key place where vectorization can yield significant speed-ups: when parts of

the generative model itself can be parallelized.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:5

Generative functions

1 # Basic polynomial model
2 @gen
3 def polynomial():
4 # @ denotes introduction of
5 # random choices
6 a = normal(0, 1) @ "a"
7 b = normal(0, 1) @ "b"
8 c = normal(0, 1) @ "c"
9 return (a, b, c)
10

11 # Point model with noise
12 @gen
13 def point(x, a, b, c):
14 y_mean = a + b * x + c * x ** 2
15 y = normal(y_mean, 0.2) @ "obs"
16 return y

Vectorization of generative functions using vmap
18 @gen
19 def npoint_curve(xs):
20 (a, b, c) = polynomial() @ "curve"
21 # Vectorization for modeling: here, over data points
22 ys = point.vmap(args_mapped=0)(xs, a, b, c) @ "ys"
23 return (a, b, c), ys
24

25 # Vectorized sampling from the generative function
26 # using the simulate interface.
27 xs = array([0.1, 0.3, 0.4, 0.6])
28 traces = vmap(simulate(npoint_curve), repeat=4)(xs)
29

30 # Vectorized evaluation of the pointwise density
31 # using the assess interface.
32 xs = traces.get_args()
33 densities, retvals = (
34 vmap(assess(npoint_curve), args_mapped=0)(
35 traces, xs
36)
37)

Fig. 3. Vectorization of generative functions. Left: Probabilistic programs encoding a prior over quadratic
functions, and a single-datapoint likelihood. Right: vmap can be used to parallelize the likelihood: the same
program that works for single points (L11-16) works for many points (L22) via vmap. Inference operations
(L27, L29-36) are also compatible with vmap.

Simulating a trace

log p = -4.70

Structure-preserving vectorization of traces

log p = -5.32 log p = -2.77 log p = -1.52

Trace from vectorized model

“curve"

“a" “b" “c"

“obs"

f32[] f32[] f32[]

f32[5]

density

log p

f32[]

−4.70

Vectorized trace from vectorized model

“curve"

“a" “b" “c"

“obs"

f32[3] f32[3] f32[3]

f32[3,5]

density log p

f32[3]

−5.32

−2.77

−1.52

Fig. 4. Vectorized traces. Top: Traces from a single simulate call (left) and vectorized vmap(simulate)
call (right) showing multiple sampled polynomial curves with varying parameters. Bottom: vmap induces
a transformation on the values in the trace, shown with shape annotations. Purple outline and shading
indicates random choices vectorized by vmap. The vmap operation preserves the structure of the trace, while
converting scalars to arrays, returning a trace in struct-of-array representation.

2.2 Vectorized Programmable Inference
Generative functions are compiled to implementations of the generative function interface (Fig. 8),
which includes methods like the following:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:6 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

• simulate: runs a generative function and yields an execution trace (trace, for short), a record of

all the named random choices encountered during execution (Fig. 4, bottom).

• assess: given a trace, computes the probability density function of the generative function’s

distribution at that trace (Fig. 4, log p).

A key idea in the design of many systems for programmable inference [7, 8, 19, 51] is that these

methods can be composed to implement inference algorithms. For example, likelihood weighting

involves simulating many possible traces from the prior, and assessing them under the likelihood.

Here, we find a second key use of vectorization: by vectorizing the compiled simulate and assess

methods, so that they can generate or assess many traces at once (Fig. 3, L28,34-36), we can scale

the number of samples (often called particles) in importance sampling and sequential Monte Carlo,

or the number of chains in MCMC, executing the samples or chains in parallel.

In the left pane of Fig. 5, we use the generative function interface methods to implement one-
particle importance sampling using the simulate and assess interfaces. Importance sampling

performs inference by "guessing" (sampling from a proposal distribution) and "checking" (scoring

a guess with an importance weight, a ratio of the likelihood of the guess under the model to that

under the proposal). The more guesses we can make, the better our posterior approximation. We

can use vmap to scale the number of guesses, automatically transforming the single-particle code

into a vectorized multi-particle version (Fig. 5, right pane).

With vmap, changing the number of particles in an inference algorithm like importance sampling

changes only the array dimensions. If the algorithm is executed in parallel on a GPU, this number

can be freely increased as long as the GPU has free memory. In the middle pane of Fig. 5, we

illustrate the scaling behavior of vectorized importance sampling: the time remains near constant

as we increase the number of particles, and the accuracy improves to convergence. This example

demonstrates a common pattern when scaling vectorized inference: we can scale the vectorization

to the capacity of the available GPU memory, with accuracy increasing as we use more memory. In

the bottom pane of Fig. 5, we illustrate the posterior approximations constructed with different

numbers of particles.

2.3 Improving Robustness Using Stochastic Branching
In real-world data, the assumptions of simple polynomial regression are often violated. Our

polynomial model assumes every data point follows the same noise model—but what if 10% of

our measurements follow a different distribution? The bottom left panel of Fig. 6 illustrates how

inference breaks down when the model’s assumptions are violated in this way. Importance sampling

produces a tight fit but does not capture the explanation that we intuitively expect for the data:

there is a clear quadratic trend obeyed by most of the datapoints, with a handful of outliers. The top

panels of Fig. 6 show how we can improve our model’s robustness by using stochastic branching,
which allows us to account for outlier observations through heterogeneous mixture modeling.

Instead of one noise model, we use stochastic branching to select between different models of the

observations. The selection is based upon a random variable that we may infer from data: each data

point gets a latent "outlier flag"—if true, the observation comes from a uniform distribution; if false,

it follows our noisy polynomial curve. If inference works effectively, we’d expect the explanations

of the data to identify the outliers and ignore them while inlier data informs the fit of our curve.

2.4 Improving Inference Accuracy Using Programmable Inference
Even when a model’s assumptions are sensible, inference can fail to find good explanations of a

given dataset. The middle panel of Fig. 6 shows the results of importance sampling applied to the

outlier model. Importance sampling identifies likely outliers, but has wide uncertainty over the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:7

1 # Single particle importance sampling.
2 def importance_sampling(ys, xs):
3 trace = simulate(default_proposal)(xs)
4 logp, _ = assess(npoint_curve)(
5 {"ys" : {"obs" : ys}},
6 xs
7)
8 w = logp - trace.get_score()
9 return (trace, w)

10 # Vectorized over N particles.
11 def vectorized_importance_sampling(ys, xs, N):
12 # vmap automatically batches over n copies
13 return vmap(
14 importance_sampling,
15 repeat=N
16)(ys, xs)
17

18 # Compute log marginal likelihood estimate.
19 def lmle(ws, N):
20 return logsumexp(ws) - log(N)

102 103 104 105 106
Number of Samples

0.15
0.30
0.45

Run
tim

e (m
s)

GPUUnderutilized GPUThrottling

GPU OOM

102 103 104 105 106
Number of Samples

600
300

0

LM
LE

26.71
GPU OOM

0.0 0.5 1.0x
0.3

0.0

0.3
y

N = 101
True curveTrue noiseData

0.0 0.5 1.0x

N = 102

0.0 0.5 1.0x

N = 105

Fig. 5. Vectorized programmable inference. Top left: Single-particle importance sampling with a proposal
(default proposal here means the prior in the npoint_curve model, excluding the "obs" random variable)
implemented using generative function interface methods (simulate and assess). Top right: Using vmap, we
can automatically transform the single-particle version into a many-particle vectorized version. Middle: The
vectorized version runs in parallel on GPUs: the runtime is nearly constant as long as the GPU has memory to
spare. Increasing the number of particles increases accuracy. Bottom: Posterior approximations for different
numbers of particles 𝑁 .

possible curves, and several curves do not seem to explain the data well. This is a kind of underfitting:

by adding new latent variables to our model, we have made inference more challenging, and the

“guess and check” approach of importance sampling runs into limitations, even with 𝑁 = 10
5

particles – the limit where our GPU memory begins to saturate.

The right panel of Fig. 6 illustrates the results of a custom hybrid algorithm, which combines

Gibbs sampling [29] and Hamiltonian Monte Carlo (HMC) [67]. The algorithm uses Gibbs sampling

to identify which points are outliers, and HMC to sample from the posterior distribution over

curves, given the inliers. As suggested by the figure, this algorithm generates much more accurate

posterior samples that explain the data well. Its implementation, which we discuss next, illustrates

a third opportunity for vectorization in programmable inference.

Vectorized Gibbs Sampling. In Fig. 7, we present the GenJAX implementation of the Gibbs sampling

step of our hybrid algorithm. Our implementation highlights several new generative function

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:8 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Robust modeling with stochastic branching

1 # Outlier-robust observation model
2 @gen
3 def point_with_outliers(x, a, b, c):
4 outlier_flag = bernoulli(0.1) @ "outlier"
5 y_mean = a + b * x + c * x ** 2
6 return cond(outlier_flag,
7 lambda x: uniform(-2.0, 2.0),
8 lambda x: trunc_norm(x, 0.05, 2.0),
9 y_mean,
10) @ "obs"

12 # Vectorized curve model with outliers
13 @gen
14 def npoint_curve_with_outliers(xs):
15 (a, b, c) = polynomial() @ "curve"
16 ys = point_with_outliers.vmap(
17 args_mapped=0,
18)(xs, a, b, c) @ "ys"
19 return ys

0.0 0.5 1.0X

2

0

2

Y

(good inference, bad model)
Curve model

True noiseTrue curveImportance Sampling
0.0 0.5 1.0X

(bad inference, good model)
Robust curve model with outliers

Outlier boundsImportance Sampling
0.0 0.5 1.0X

(good inference, good model)

Gibbs/HMC

0.0 0.2 0.4 0.6 0.8 1.0P(outlier)
Fig. 6. Robust modeling with stochastic branching. Stochastic branching allows us to extend our models to
explain more complex data, including data with outliers. Circle markers depict observed data points: the
shading of the marker denotes the estimated posterior probability that the point is an outlier. Bottom, left:
Using importance sampling to construct a posterior in our original model results in a poor explanation of
the data. Bottom, middle: Extending the model to explicitly represent outliers as random variables should
allow us to produce better explanations, but results in a harder inference problem which importance sampling
can’t effectively solve. Bottom, right: Changing inference to vectorized MCMC using Gibbs sampling (to infer
outliers) and Hamiltonian Monte Carlo (to infer continuous parameters) finds better explanations of the data,
i.e., more accurate posterior approximations.

interface methods (Fig. 8), including trace manipulation and getter methods. When we call the

getter trace.get_subtrace("ys"), we extract the portion of the trace underneath the address "ys".

The call to the update method passes a dictionary of constraints that specifies updates to the

"outlier" entries: update replays the program and splices those choices into the trace, returning a

modified trace together with the incremental weight induced by the change. In our outlier model,

we apply Gibbs sampling to update the vector of outlier choices "outlier" (which are Booleans),

keeping other random choices constant. As each outlier choice is conditionally independent from

the others, given all the non-outlier choices, the "outlier" updates can be vectorized. For each

element in the "outlier" vector, we enumerate the unnormalized posterior density (using the

generative function assess method) for the possible values for the outlier value, and then sample

a new value from a categorical distribution, with probabilities proportional to the computed

densities. Combining Gibbs sampling for discrete "outlier" choices with HMC for continuous

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:9

Enumerative Gibbs update for single point

1 def gibbs_outlier(subtrace):
2 def _assess(v):
3 (x, a, b, c) = subtrace.args()
4 chm = {"outlier": v,
5 "obs": subtrace["obs"]}
6 log_prob, _ = assess(point_with_outliers)(
7 chm, x, a, b, c
8)
9 return log_prob
10

11 log_probs = vmap(_assess)(
12 array([False, True])
13)
14 return categorical(log_probs) == 1

Vectorized enumerative Gibbs

1 # `trace` is a single trace object
2 # whose fields store batched values.
3 def enumerative_gibbs(trace):
4 xs = trace.get_args()
5 # `subtrace` refers to the struct-of-arrays
6 # view for the "ys" addresses.
7 subtrace = trace.get_subtrace("ys")
8 new_outliers = vmap(gibbs_outlier)(subtrace)
9 # `update` applies the generative function
10 # interface method that edits a trace.
11 new_trace, weight, _ = update(
12 trace,
13 {"ys": {"outlier": new_outliers}},
14)
15 return new_trace

Fig. 7. Vectorized enumerative Gibbs sampling for outlier detection. Left: Enumerative Gibbs update for a
single data point’s outlier indicator. For each possible value (inlier/outlier), we compute the log probability
under the model (proportional to the unnormalized posterior) and sample a new indicator using categorical
sampling. Right: Vectorized Gibbs sampling step that applies the single-point update across all data points
using vmap, then updates the trace with the new outlier indicators.

simulate: sampling

1 # Unconstrained sampling of a trace
2 tr = simulate(npoint_curve)(xs)

generate: importance sampling
8 # Constrained sampling of a trace
9 partial_chm = {"ys": {"obs": data}}
10 tr_, weight = generate(npoint_curve)(
11 partial_chm, xs
12)

assess: density evaluation
4 # Evaluate log density at traced sample
5 chm = get_choices(tr)
6 logp, retval = assess(npoint_curve)(chm, xs)

update: trace modification
13 # Modify a trace given constraints
14 new_chm = {"curve": {"a": 1.0}}
15 tr_, w, discard = update(npoint_curve)(
16 tr, new_chm, xs
17)

Fig. 8. Generative function interface methods. GenJAX’s generative functions provide several methods for
programmable inference - a way to extend the system with new variants of inference using high-level
interfaces. For authoring programmable algorithms which use proposal distributions (like sequential Monte
Carlo), the simulatemethod performs unconstrained sampling and reciprocal density evaluation. For density
evaluation, assess evaluates the log joint density of a generative function on traced samples. The generate
interface performs constrained sampling (using importance weighting), allowing construction of a trace with
observation constraints. The update method modifies a trace with provided choices, returning an updated
trace and an incremental importance weight, and is used by algorithms like Gibbs sampling or Hamiltonian
Monte Carlo to modify traces.

curve parameters, we designed an effective custom MCMC algorithm for inference in the outlier

model, capturing an accurate posterior over curves.

3 Formal Model
In this section, we give the syntax and semantics of a core calculus for traced probabilistic program-

ming with vectors, and formalize a program transformation that vectorizes probabilistic programs.

The formal model distills key ideas from our actual implementation in JAX, described in Section 4.

Figure 9 illustrates the link between implementation and core calculus.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:10 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

GenJAX Implementation

1 # Generative function definition
2 # with @gen decorator
3 @gen
4 def point(x, a, b, c):
5 y_mean = a + b * x + c * x ** 2
6 y = normal(y_mean, 0.2) @ "obs"
7 return y
8

9 @gen
10 def npoint(xs):
11 (a, b, c) = polynomial() @ "curve"
12 ys = point.vmap(
13 args_mapped=0,
14)(xs, a, b, c) @ "ys"
15 return (a, b, c), (xs, ys)
16

17 # Core interface usage
18 # Sample a trace
19 tr = simulate(npoint, xs)
20

21 # Density evaluation
22 chm = get_choices(tr)
23 logp, retval = assess(npoint, chm, xs)

Syntax in 𝜆GEN

1 -- Generative function definition
2 -- with explicit types
3 point :: R→ R3 → G R
4 point x (a, b, c) = do𝐺
5 -- shorthands: + for add, × for mul
6 y_m ← pure (a + b × x + c × x2)
7 y ← trace "obs" (normal y_m 0.2)
8 return𝐺 y
9

10 npoint :: R[𝑛] → G R[𝑛]
11 npoint xs = do𝐺
12 (a, b, c) ← trace "curve" polynomial
13 ys ← trace "ys" (
14 vmap{𝜆 x . point x (a, b, c)} xs
15)
16 return𝐺 ys
17

18 -- Core interface usage
19 -- Sample a trace
20 tr = simulate{npoint xs}
21

22 -- Density evaluation
23 chm, _, _ = tr
24 logp, retval = assess{npoint xs} chm

Fig. 9. GenJAX implementation vs. formal syntax. The GenJAX implementation (left) provides probabilistic
programming abstractions in Python with the @gen decorator and the @ operator for addressing. The formal
model (right) uses Haskell-like notation to emphasizemathematical structure: generative functions asmonadic
computations with type 𝐺 𝜏 , the trace construct for recording random choices with addresses, and vmap{·},
simulate{·} and assess{·} as program transformations.

3.1 Syntax of 𝜆GEN

𝜆GEN is a simply-typed lambda calculus which extends a standard array programming calculus in

two main ways:

(1) a probability monad P for stochastic computations; and

(2) a graded monad G of generative functions, or traced probabilistic programs.

Generative functions can be automatically compiled to the density functions and stochastic

traced simulation procedures necessary for inference (Section 3.3).

Types. The types of 𝜆GEN are given at the top of Figure 10, and comprise:

• Ground types. We define representative base types: booleans B, real numbers R and positive real

numbers R>0. A batched type 𝑇 is a base type 𝐵 or a tensor type 𝑇 [𝑛]. A tensor type 𝑇 [𝑛] is an
𝑛-fold product of a type𝑇 , representing an 𝑛-dimensional array of elements of type𝑇 . The ground

types 𝜂 consist of batched types 𝑇 , product types 𝜂1 × 𝜂2, the unit type 1, and string-indexed

record types {𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}, where all keys 𝑘𝑖 are distinct. The type of empty record is also

noted 1.

• Density-carrying distributions. The type D 𝜂 represents density-carrying distributions over the

ground type 𝜂. We assume that for each primitive distribution 𝑑 : 𝜂1 → D 𝜂2, we have an

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:11

Base types 𝐵 ::= B | R | R>0

Batched types 𝑇 ::= 𝐵 | 𝑇 [𝑛]
Ground types 𝜂 ::= 1 | 𝑇 | 𝜂1 × 𝜂2 | {𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}

Types 𝜏 ::= 𝜂 | 𝜏1 → 𝜏2 | 𝜏1 × 𝜏2 | D 𝜂 | P 𝜂 | G𝛾 𝜂

Grading 𝛾 ::= {𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}
Terms 𝑡 ::= () | 𝑐 | 𝑝 | 𝑥 | (𝑡1, 𝑡2) | 𝜋𝑖𝑡

| 𝑡 [𝑘] | {𝑘1 : 𝑡1, . . . , 𝑘𝑛 : 𝑡𝑛}
| 𝑡1 𝑡2 | 𝜆𝑥.𝑡 | let 𝑥 = 𝑡1 in 𝑡2
| select(𝑡1, 𝑡2, 𝑡3) | trace(𝑠, 𝑡)
| return𝐺 𝑡 | return𝑃 𝑡

| doG{𝑚} | doP{𝑚} | sample 𝑡

Monadic𝑚 ::= 𝑡 | 𝑥 ← 𝑡 ;𝑚

Constants 𝑐 ::= 𝑎 (∈ 𝑇)
Primitives 𝑝 ::= Scalar | Vectorized | Array | Distribution

Scalar ::= cos | sin | exp | add | mul

Vectorized ::= dot | svd | sum
Array ::= fold | scan | reduce

Distribution ::= uniform | normal | bernoulli

Γ ⊢ 𝑡 : P 𝜂 Γ, 𝑥 : 𝜂 ⊢ doP{𝑚} : P 𝜂′

Γ ⊢ doP{𝑥 ← 𝑡 ;𝑚} : P 𝜂′
Γ ⊢ 𝑡 : D 𝜂

Γ ⊢ sample 𝑡 : P 𝜂

Γ ⊢ 𝑡 : {𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛} 𝑘 = 𝑘𝑖

Γ ⊢ 𝑡 [𝑘] : 𝜂𝑖
Γ ⊢ 𝑡1 : 𝜂1 . . . Γ ⊢ 𝑡𝑛 : 𝜂𝑛

Γ ⊢ {𝑘1 : 𝑡1, . . . , 𝑘𝑛 : 𝑡𝑛} : {𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}
Γ ⊢ 𝑡 : 𝜂

Γ ⊢ return𝑃 𝑡 : P 𝜂

Γ ⊢ 𝑡1 : B𝑠 Γ ⊢ 𝑡2 : 𝑇 𝑠 Γ ⊢ 𝑡3 : 𝑇 𝑠

Γ ⊢ select(𝑡1, 𝑡2, 𝑡3) : 𝑇 𝑠

Γ ⊢ 𝑡1 : 𝑇1 [𝑛] Γ ⊢ 𝑡2 : 𝑇1 → 𝑇2 → 𝑇2 Γ ⊢ 𝑡3 : 𝑇2

Γ ⊢ fold(𝑡1, 𝑡2, 𝑡3) : 𝑇2

Γ ⊢ 𝑡 : P 𝜂

Γ ⊢ doP{𝑡} : P 𝜂

Γ ⊢ 𝑡 : G𝛾 𝜂

Γ ⊢ doG{𝑡} : G𝛾 𝜂

Γ ⊢ 𝑡1 : 𝑇1 [𝑛] Γ ⊢ 𝑡2 : 𝑇1 → 𝑇2 → 𝑇2 Γ ⊢ 𝑡3 : 𝑇2

Γ ⊢ scan(𝑡1, 𝑡2, 𝑡3) : (𝑇2 [𝑛] ×𝑇2)
𝑘 ∈ Str Γ ⊢ 𝑡 : G𝛾 𝜂

Γ ⊢ trace(𝑘, 𝑡) : G{𝑘 ↦→𝛾 } 𝜂

𝑘 ∈ Str Γ ⊢ 𝑡 : D 𝜂

Γ ⊢ trace(𝑘, 𝑡) : G{𝑘 ↦→𝜂} 𝜂
Γ ⊢ 𝑡 : 𝜂

Γ ⊢ return𝐺 𝑡 : G{} 𝜂

Γ ⊢ 𝑡 : G𝛾 𝜂 Γ, 𝑥 : 𝜂 ⊢ doG{𝑚} : G𝛾 ′ 𝜂
′ keys(𝛾) ∩ keys(𝛾 ′) = ∅

Γ ⊢ doG{𝑥 ← 𝑡 ;𝑚} : G𝛾 ++𝛾 ′ 𝜂
′

Fig. 10. Syntax and typing rules of 𝜆GEN

additional density primitive 𝑑.𝑑𝑒𝑛𝑠𝑖𝑡𝑦 : 𝜂1 → 𝜂2 → R that computes the associated probability

density (or mass) function with respect to the stock measure on 𝜂2.
1

• Stochastic computations. The typeP𝜂 is used to track computations that use probabilistic sampling.

We use a Haskell-like do notation. doP{𝑥 ← 𝑡 ;𝑚} sequences probabilistic computations, where 𝑥

is bound to the result of 𝑡 in the continuation𝑚. return𝑃 𝑡 embeds a deterministic computation

𝑡 as a probabilistic one, enabling deterministic logic within probabilistic computation. sample 𝑡

samples from a given primitive distribution.

• Traced generative functions. The types G𝛾 𝜂 represent traced generative functions. Here, 𝛾 is

a grading tracking the type of the generative function’s trace [50]. The grading is a record

type {𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}, where the keys 𝑘𝑖 track the names supplied to trace(·, ·) calls in the

probabilistic program, and the corresponding 𝜂𝑖 is the type of data traced by each call. Note that

when a generative function traces a call to another generative function, the corresponding 𝜂𝑖
will itself be a string-keyed record, leading to the sorts of hierarchical traces depicted in Fig. 4.

We equip the grading with a monoid structure ++ for concatenation. It merges two records in

an obvious way. The unit of the monoid is the empty record {} of type 1. This turns G𝛾 𝜂 into

a graded monad, where sequencing two generative function programs via doG{} concatenates
their trace types. Note that we restrict the return type 𝜂 of a generative function to be ground.

• Functions.We also have standard function types 𝜏1 → 𝜏2.

1
These stock measures are defined in the standard way, by induction on 𝜂2. At continuous base types (e.g. R), we choose
the Lebesgue measure, and at discrete base types (e.g. B), the counting measure. Products of base types, including product

types, record types, and tensor types, have as stock measures the products of the stock measures of their constituent types.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:12 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Tensor Shape Notation. A tuple (𝑠1, . . . , 𝑠𝑘) of natural numbers is called a tensor shape. For any
batched type 𝑇 , we write 𝑇 𝑠

as shorthand for 𝑇 [𝑠𝑘] . . . [𝑠1].
A shape 𝑡 has prefix shape 𝑠 if 𝑠 := (𝑠1, . . . , 𝑠𝑘) and 𝑡 := (𝑠1, . . . , 𝑠𝑘 , 𝑡1, . . . , 𝑡𝑚). Shape concatenation:

if 𝑠1 := (𝑠1

1
, . . . , 𝑠1

𝑘
) and 𝑠2 := (𝑠2

1
, . . . , 𝑠2

𝑗), then 𝑠1 + 𝑠2 := (𝑠1

1
, . . . , 𝑠1

𝑘
, 𝑠2

1
, . . . , 𝑠2

𝑗). Shape subtraction:
given shapes 𝑠, 𝑡 where 𝑡 has prefix shape 𝑠 , we write 𝑡 −𝑠 for the unique shape 𝑠2 such that 𝑠+𝑠2 = 𝑡 .

For shape 𝑠 = (𝑠1, . . . , 𝑠𝑘), we write 𝑖 ∈ 𝑠 to mean 𝑖 ∈ {(𝑖1, . . . , 𝑖𝑘) | ∀𝑗, 1 ≤ 𝑖 𝑗 ≤ 𝑠 𝑗 }. We also use

this syntactic notation for sets and functions. Given set 𝑋 and shape 𝑠 = (𝑠1, . . . , 𝑠𝑘), we write 𝑋 𝑠

for 𝑋 𝑠1×...×𝑠𝑘
. Note that (𝑋𝑞)𝑠 = 𝑋 𝑠+𝑞

. For 𝑥 ∈ 𝑋 𝑠
and 𝑖 ∈ 𝑠 , we write 𝑥 [𝑖] for the 𝑖-th projection

of 𝑥 . For 𝑥 ∈ 𝑋 𝑡
where 𝑡 has prefix shape 𝑠 and 𝑖 ∈ 𝑠 , we extend 𝑥 [𝑖] to denote an element of

𝑋 𝑡−𝑠
. For function 𝑓 : 𝑋 → 𝑌 and shape 𝑠 , we write 𝑓𝑠 : 𝑋 𝑠 → 𝑌 𝑠

for pointwise application:

(𝑓𝑠 (𝑥)) [𝑖] = 𝑓 (𝑥 [𝑖]). This extends to multi-argument functions: 𝑓𝑠 : 𝑋 𝑠
1
× . . . ×𝑋 𝑠

𝑘
→ 𝑌 𝑠

1
× . . . ×𝑌 𝑠

𝑚 .

Terms. The terms of 𝜆GEN and their typing rules are given in the middle and bottom parts of

Figure 10. Terms include:

• String-indexed record literals {𝑘1 : 𝑡1, . . . , 𝑘𝑛 : 𝑡𝑛}, which create a record with keys 𝑘1, . . . , 𝑘𝑛 and

associated values computed by the terms 𝑡1, . . . , 𝑡𝑛 . If 𝑡 is of record type, 𝑡 [𝑘] retrieves the value
associated with key 𝑘 .

• Constants. Constants 𝑐 include base values 𝑎 ∈ 𝐵 for every base type 𝐵 and for every tensor type

𝑇 . A value of type 𝐵 [𝑠𝑘] ...[𝑠1] is a 𝑘-dimensional array of type 𝐵. The tuple 𝑠 := (𝑠1, . . . , 𝑠𝑘) is
called the tensor shape of the tensor.

• Scalar Primitives. Scalar primitives include elementwise operations such as cos, exp, and mul.
• Vectorized Primitives. Vectorized primitives include operations that operate across tensor dimen-

sions, such as the dot product (dot𝑇 : 𝑇 → 𝑇 → R, where 𝑇 has base type R), singular value
decomposition (svd𝑛,𝑚 : R[𝑚] [𝑛] → R[𝑚] [𝑛] × R[𝑚] [𝑛] × R[𝑚] [𝑛]), and summation (sum𝑇 :

𝑇 → R, where 𝑇 has base type R).
• Array Primitives. Array primitives include operations that operate on arrays, such as fold, scan,

and reduce. fold repeats a binary function over an array, scan further returns the intermediate

results, and reduce is a parallel version of fold that assumes the operation to be associative.

• Batched primitives.We assume that every primitive (scalar, vectorized, array, and distribution)

𝑝 can be subscripted with a tensor shape 𝑠 to obtain 𝑝𝑠 , representing a batched version of

the primitive that is applied element-wise. For instance, for the scalar primitive cos we have

cos𝑠 : R𝑠 → R𝑠
. Given a vectorized primitive such as dotR[𝑛] , dotR[𝑛],𝑠 : R[𝑛]𝑠 × R[𝑛]𝑠 → R𝑠

(for tensor shapes 𝑠) represents a batched version of the primitive dotR[𝑛] .
• Distribution primitives. The language provides built-in distribution constructors: uniform : D R
is the uniform distribution over (0, 1), normal : R × R>0 → D R is the normal distribution

with mean and variance parameters, and bernoulli : R → D B is the Bernoulli distribution

with a probability parameter. Batched versions of distribution primitives generate tensors of

independent samples. For instance, for a distribution constructor such as uniform, we have

uniform𝑠 : D R𝑠
returning independent samples from the uniform distribution on (0, 1) in a

tensor of shape 𝑠 .

• Traced programs. Traced programs are written in a monadic style similar to doP{}. The key

change is that all sampled variables must be named, and are accumulated into a trace. We

write Str for the set of strings. Primitive distributions 𝑡 : D 𝜂 can be sampled using the syntax

trace(𝑘, 𝑡) : G{𝑘 ↦→𝜂} 𝜂; the resulting program returns the sampled value and records it in the

trace with name 𝑘 ∈ Str. Compound generative functions 𝑡 : G𝛾 𝜂 can also be arguments to trace:

in this case trace(𝑘, 𝑡) has type G{𝑘 ↦→𝛾 } 𝜂. Note that in the trace type, the entire trace type 𝛾

of 𝑡 has been nested under the name 𝑘 . Deterministic computations can be embedded into G

with the syntax return𝐺 𝑡 : G{} 𝜂; the resulting programs have empty traces. doG{𝑥 ← 𝑡 ;𝑚}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:13

Types

⟦B⟧ = B
⟦R⟧ = R
⟦𝑇 [𝑛]⟧ = ⟦𝑇⟧𝑛
⟦1⟧ = 1

⟦𝜂1 × 𝜂2⟧ = ⟦𝜂1⟧ × ⟦𝜂2⟧
⟦{𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}⟧ = ⟦𝜂1⟧ × · · · × ⟦𝜂𝑛⟧
⟦𝜏1 → 𝜏2⟧ = [⟦𝜏1⟧, ⟦𝜏2⟧]
⟦𝜏1 × 𝜏2⟧ = ⟦𝜏1⟧ × ⟦𝜏2⟧

⟦P 𝜂⟧ = P⟦𝜂⟧
⟦D 𝜂⟧ = P≪⟦𝜂⟧
⟦G𝛾 𝜂⟧ = P≪⟦𝛾⟧ × [⟦𝛾⟧, ⟦𝜂⟧]

Terms

⟦()⟧(𝛾) = ()
⟦𝑝𝑠⟧(𝛾) = 𝑝𝑠
⟦𝑥 : 𝜏⟧(𝛾) = 𝛾 (𝑥)
⟦𝑎⟧(𝛾) = 𝑎

⟦𝑡 [𝑘]⟧(𝛾) = (⟦𝑡⟧(𝛾))𝑘
⟦𝜋𝑖𝑡⟧(𝛾) = (⟦𝑡⟧(𝛾))𝑖
⟦doP{𝑡}⟧(𝛾) = ⟦𝑡⟧(𝛾)
⟦return𝑃 𝑡⟧(𝛾) = 𝛿⟦𝑡⟧(𝛾)
⟦sample 𝑡⟧(𝛾) = ⟦𝑡⟧(𝛾)
⟦doG{𝑡}⟧(𝛾) = ⟦𝑡⟧(𝛾)

⟦𝑡1 𝑡2⟧(𝛾) = ⟦𝑡1⟧(𝛾) ⟦𝑡2⟧(𝛾)
⟦(𝑡1, 𝑡2)⟧(𝛾) = (⟦𝑡1⟧(𝛾), ⟦𝑡2⟧(𝛾))
⟦return𝐺 𝑡⟧(𝛾) = (𝛿{} , 𝜆() .⟦𝑡⟧(𝛾))
⟦trace(𝑘, 𝑡 : G𝛾 ′ 𝜏)⟧(𝛾) = ⟦𝑡⟧(𝛾)
⟦trace(𝑘, 𝑡 : D 𝜂)⟧(𝛾) = (⟦𝑡⟧(𝛾), 𝜆𝑥 .𝑥)
⟦𝜆𝑥 : 𝜏 .𝑡⟧(𝛾) = 𝜆𝑥 : ⟦𝜏⟧.⟦𝑡⟧(𝛾)
⟦let 𝑥 = 𝑡1 in 𝑡2⟧(𝛾) = ⟦𝑡2⟧(𝛾 [𝑥 ↦→ ⟦𝑡1⟧(𝛾)])
⟦select(𝑡1, 𝑡2, 𝑡3)⟧(𝛾) = select(⟦𝑡1⟧(𝛾), ⟦𝑡2⟧(𝛾), ⟦𝑡3⟧(𝛾))
⟦{𝑘1 : 𝑡1, . . . , 𝑘𝑚 : 𝑡𝑚}⟧(𝛾) = (⟦𝑡1⟧(𝛾), . . . , ⟦𝑡𝑚⟧(𝛾))
⟦doP{𝑥 ← 𝑡 ;𝑚}⟧(𝛾,𝐴) =

´
⟦𝑡⟧(𝛾, 𝑑𝑢)⟦𝑚⟧(𝛾 [𝑥 ↦→ 𝑢], 𝐴)

⟦doG{𝑥 ← 𝑡 ;𝑚}⟧1 (𝛾,𝐴) =
´
⟦𝑡⟧1 (𝛾, 𝑑𝑢)

´
⟦doG{𝑚}⟧(𝛾 [𝑥 ↦→ ⟦𝑡⟧2 (𝛾) (𝑢)], 𝑑𝑣)𝛿𝑢++𝑣 (𝐴)

⟦doG{𝑥 ← 𝑡 ;𝑚}⟧2 (𝛾) = 𝜆𝑡𝑟 .⟦doG{𝑚}⟧2 (𝛾 [𝑥 ↦→ ⟦𝑡⟧2 (𝛾) (𝜋grade(𝑡) (𝑡𝑟))]) (𝜋grade(do
G
{𝑚}) (𝑡𝑟))

Fig. 11. Denotational semantics of 𝜆GEN

can be used for sequencing, but the top-level names used in 𝑡 and𝑚 must be disjoint. Using the

trace(𝑘, 𝑡) construct to nest a call to a generative function under a new label 𝑘 is one way to

ensure disjointness even when the same subprogram is invoked multiple times.

• Other terms. We also have the standard terms of the 𝜆-calculus, e.g. the unit value (), variables 𝑥 ,
abstractions 𝜆𝑥.𝑡 , applications 𝑡1 𝑡2, tuples (𝑡1, 𝑡2), projections 𝜋𝑖𝑡 . We write select(𝑡1, 𝑡2, 𝑡3) for
the conditional selection of elements from a tensor. The three subterms must have batched types

of the same shape, and the returned value at index 𝑖 is 𝑡2 [𝑖] if 𝑡1 [𝑖] is true, 𝑡3 [𝑖] otherwise.

3.2 Denotational Semantics
Figure 11 gives a denotational semantics for 𝜆GEN using quasi-Borel spaces (QBS) [39], a standard

mathematical framework for higher-order probabilistic programming. See the supplementary

material for the definition of QBS. We assign to each type 𝜏 a space ⟦𝜏⟧ and to each term Γ ⊢ 𝑡 : 𝜏 a

map ⟦𝑡⟧ :

∏
𝑥∈Γ⟦Γ(𝑥)⟧ → ⟦𝜏⟧ from the interpretation of the environment to the interpretation of

its return type. We use [𝑋,𝑌] to denote the quasi-Borel function space, 𝑋 ×𝑌 for the product, 1 for

a singleton QBS, and denote by P the probability monad on QBS (see, e.g., Heunen et al. [39]). We

also use ⊗ for the product measure, and 𝛿𝑥 for the Dirac measure at 𝑥 . Base types are interpreted as

their usual sets equipped with the Borel-sigma algebra (random elements are measurable functions).

All our ground types are interpreted as standard Borel spaces, and we denote by P≪⟦𝜂⟧ the space
of probability measures on the standard Borel space ⟦𝜂⟧ that are absolutely continuous w.r.t. the

stock measure for type 𝜂. A generative function of type G𝛾 𝜂 is interpreted as a pair of a measure

on 𝛾 that is absolutely continuous w.r.t. the stock measure on ⟦𝛾⟧, and a return value function

⟦𝛾⟧ → ⟦𝜂⟧ which computes the program’s return value given a trace, i.e. given values for all the

random choices in the program. If ⟦𝑡⟧ denotes a tuple, such as when 𝑡 : G𝛾 𝜂, we write ⟦𝑡⟧𝑘 for

its 𝑘-th component. For a trace 𝑡𝑟 ∈ ⟦𝛾 ++ 𝛾 ′⟧, we write 𝜋𝛾 (𝑡𝑟) and 𝜋𝛾 ′ (𝑡𝑟) the projections to ⟦𝛾⟧,
⟦𝛾 ′⟧ respectively. For a term 𝑡 of type G𝛾 𝜂, we write grade(𝑡) to extract the grade 𝛾 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:14 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Programmable inference transformations on types

simulate{D 𝜂} = P (𝜂 × R) assess{D 𝜂} = 𝜂 → R
simulate{G𝛾 𝜂} = P (𝛾 × 𝜂 × R) assess{G𝛾 𝜂} = 𝛾 → 𝜂 × R

Transformations act homomorphically on product and function types and leave ground types unchanged

(e.g. assess{𝜏1 → 𝜏2} = assess{𝜏1} → assess{𝜏2}).

On terms

simulate{bernoulli} = 𝜆𝑝.doP{𝑏 ← sample (bernoulli 𝑝); return𝑃 (𝑏, select(𝑏, 𝑝, 1 − 𝑝))}
simulate{return𝐺 𝑡} = return𝑃 ({}, simulate{𝑡}, 1)
simulate{trace(𝑘, 𝑡 : D 𝜂)} = doP{(𝑥, 𝑟) ← simulate{𝑡}; return𝑃 ({𝑘 : 𝑥}, 𝑥, 𝑟)}
simulate{trace(𝑘, 𝑡 : G𝛾 𝜂)} = doP{(𝑢, 𝑥, 𝑟) ← simulate{𝑡}; return𝑃 ({𝑘 : 𝑢}, 𝑥, 𝑟)}
simulate{doG{𝑥 ← 𝑡 ;𝑚}} = doP{(𝑢, 𝑥,𝑤) ← simulate{𝑡}; (𝑢′, 𝑦,𝑤 ′) ← simulate{doG{𝑚}};

return𝑃 (𝑢 ++ 𝑢′, 𝑦,𝑤 ·𝑤 ′)}
assess{bernoulli} = 𝜆𝑝.𝜆𝑏.select(𝑏, 𝑝, 1 − 𝑝)
assess{return𝐺 𝑡} = 𝜆𝑢.(assess{𝑡}, 1)
assess{trace(𝑘, 𝑡 : D 𝜂)} = 𝜆𝑢.(𝑢 [𝑘], assess{𝑡}(𝑢 [𝑘]))
assess{trace(𝑘, 𝑡 : G𝛾 𝜂)} = 𝜆𝑢.assess{𝑡}(𝑢 [𝑘])
assess{doG{𝑥 ← 𝑡 ;𝑚}} = 𝜆𝑢.let (𝑥,𝑤) = assess{𝑡}(𝜋grade(𝑡) (𝑢)) in

let (𝑦,𝑤 ′) = assess{doG{𝑚}}(𝜋grade(do
G
{𝑚}) (𝑢)) in(𝑦,𝑤 ·𝑤 ′)

Transformations act analogously to bernoulli on other primitive distributions, and homomorphically on

terms introducing or eliminating products and functions (e.g., assess{(𝑡1, 𝑡2)} = (assess{𝑡1}, assess{𝑡2})).

Fig. 12. Definitions of the simulate{·} and assess{·} transformations, on types and terms.

3.3 Programmable Inference
Generative functions support methods simulate{−} and assess{−}, which are implemented as

source-to-source program transformations. We present the transformations, which are standard [50,

54], in Figure 12. At a high level, simulate{−} allows us to run the program and simulate traces. It

returns a trace of the program, a return value, and the joint density at that sampled trace. assess{−}
returns the density of a given trace. It does so by running the program, but with each primitive

sampling statement replaced by code that looks up the pre-determined outcome in the given trace,

and multiplies the density of the primitive distribution into a running total. The key correctness

property of simulate{−} and assess{−} is given in Proposition 3.1, which can be proved using a

standard logical relations argument analogous to the ones given in, e.g., [7, 51, 54]. We denote by

𝑓∗𝜇 the pushforward distribution of 𝜇 by 𝑓 .

Proposition 3.1. Let ⊢ 𝑡 : G𝛾 𝜂 be a closed term of generative function type, with denotation
(𝜇, 𝑓) = ⟦𝑡⟧. Further, let 𝜈 be the stock measure associated with the record type 𝛾 . Then:

• ⟦simulate{𝑡}⟧ = ⟨𝑖𝑑, 𝑓 , 𝑑𝜇
𝑑𝜈
⟩∗𝜇 (i.e., simulate{𝑡} faithfully generates a trace 𝑢 from 𝜇, and

returns (𝑢, 𝑓 (𝑢),𝑤), where𝑤 is the density of 𝜇 at 𝑢); and
• ⟦assess{𝑡}⟧ = ⟨𝑓 , 𝑑𝜇

𝑑𝜈
⟩ (i.e., assess{𝑡} faithfully computes the return value function and the

density of 𝜇 at a given trace).

3.4 Vectorization Program Transform
We introduce vmap𝑛{−} as a program transform for vectorization. vmap𝑛{−} takes an integer 𝑛

and a term 𝑡 of type 𝜏 and returns a vectorized version of type 𝜏 [𝑛], defined inductively as follows:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:15

Types and contexts

vmap𝑛{𝜏} = 𝜏 [𝑛] vmap𝑛{𝑥1 : 𝜏1, . . . , 𝑥𝑘 : 𝜏𝑘 } = 𝑥1 : 𝜏1 [𝑛], . . . , 𝑥𝑘 : 𝜏𝑘 [𝑛]

Terms

vmap𝑛{()} = () vmap𝑛{𝑎 : 𝑇 } = 𝑎𝑛 : 𝑇 [𝑛] vmap𝑛{𝑝𝑠 } = 𝑝 (𝑛)+𝑠
vmap𝑛{·} acts homomorphically on other terms (e.g., vmap𝑛{𝑡1 𝑡2} = vmap𝑛{𝑡1} vmap𝑛{𝑡2}

Fig. 13. Inductive definition of vmap𝑛{·}, a vectorization transformation, on types and terms.

𝑅1 := {((𝑥, . . . , 𝑥), 𝑥) | 𝑥 ∈ ⟦1⟧}
𝑅𝐵 := {((𝑥1, . . . , 𝑥𝑛), 𝑥) | 𝑥𝑖 ∈ ⟦𝐵⟧, 𝑥 = (𝑥1, . . . , 𝑥𝑛)}
𝑅𝑇 := {((𝑥1, . . . , 𝑥𝑛), 𝑥) | 𝑥𝑖 ∈ ⟦𝑇⟧, 𝑥 = (𝑥1, . . . , 𝑥𝑛)}
𝑅𝜏1×𝜏2

:= {(((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)), (𝑧1, 𝑧2)) | ((𝑥1, . . . , 𝑥𝑛), 𝑧1) ∈ 𝑅𝜏1
, ((𝑦1, . . . , 𝑦𝑛), 𝑧2) ∈ 𝑅𝜏2

}
𝑅𝜏1→𝜏2

:= {((𝑓1, . . . , 𝑓𝑛), 𝑔) | ∀((𝑥1, . . . , 𝑥𝑛), 𝑦) ∈ 𝑅𝜏1
, ((𝑓1 (𝑥1), . . . , 𝑓𝑛 (𝑥𝑛)), 𝑔) ∈ 𝑅𝜏2

}
𝑅{𝑘1:𝜂1,...,𝑘𝑚 :𝜂𝑚 } := {((𝑥1, . . . , 𝑥𝑛), 𝑦) | ∀𝑗 ∈ {1, . . . ,𝑚}, ((𝜋 𝑗𝑥1, ..., 𝜋 𝑗𝑥𝑛), 𝜋 𝑗𝑦) ∈ 𝑅𝜂 𝑗

}
𝑅D 𝜂 := {((𝜇1, . . . , 𝜇𝑛), 𝜇) | 𝜇 = 𝑅𝜂∗ (

⊗𝑛

𝑖=1
𝜇𝑖)}

𝑅P 𝜂 := {((𝜇1, . . . , 𝜇𝑛), 𝜇) | 𝜇 = 𝑅𝜂∗ (
⊗𝑛

𝑖=1
𝜇𝑖)}

𝑅G𝛾 𝜂 := {(((𝜇1, 𝑓1), . . . , (𝜇𝑛, 𝑓𝑛)), (𝜈, 𝑔)) | ((𝜇1, . . . , 𝜇𝑛), 𝜈) ∈ 𝑅P 𝛾 , ((𝑓1, . . . , 𝑓𝑛), 𝑔) ∈ 𝑅𝛾→𝜂}

Fig. 14. Logical relations for establishing the correctness of vmap.

(D 𝜂) [𝑛] ::=D 𝜂 [𝑛]
(G𝛾 𝜂) [𝑛] ::=G𝛾 [𝑛] 𝜂 [𝑛]
(P 𝜂) [𝑛] ::= P 𝜂 [𝑛]

{𝑘1 : 𝜂1, . . . , 𝑘𝑛 : 𝜂𝑛}[𝑛] ::= {𝑘1 : 𝜂1 [𝑛], . . . , 𝑘𝑛 : 𝜂𝑛 [𝑛]}

(𝜏1 → 𝜏2) [𝑛] ::= 𝜏1 [𝑛] → 𝜏2 [𝑛]
(𝜏1 × 𝜏2) [𝑛] ::= 𝜏1 [𝑛] × 𝜏2 [𝑛]

1[𝑛] ::= 1

(𝑇) [𝑛] ::=𝑇 [𝑛]
On primitives, vmap𝑛{−} will simply extend the batching shape 𝑠 of the primitive to (𝑛) + 𝑠 .

For instance, vmap𝑛{add𝑠 } : R(𝑛)+𝑠 → R(𝑛)+𝑠 → R(𝑛)+𝑠 will be the elementwise addition of

two tensors of shape (𝑛) + 𝑠 . vmap𝑛{−} performs an automatic "array of struct" to "struct of

array" conversion, and extends homomorphically to all the constructs of the language. We present

vmap𝑛{−} as a program transformation in Figure 13. If 𝑎 is a tensor literal of shape s, we denote

by 𝑎𝑛 the tensor literal of shape (𝑛) + 𝑠 that consists of 𝑛 copies of 𝑎.

To prove the correctness of vmap𝑛{}, we use a proof by logical relations. In Fig. 14, we define

relations 𝑅𝜏 ⊆ ⟦𝜏⟧𝑛 × ⟦𝜏 [𝑛]⟧ for all types 𝜏 , which intuitively encode the requirement for a value

of type 𝜏 [𝑛] to be a correct vectorization of 𝑛 distinct values of type 𝜏 . We denote by 𝑅𝜂∗𝜇 the

pushforward of the distribution 𝜇 by the functional relation 𝑅𝜂 .
2
This relies on the fact, which

can be established via a simple inductive argument, that for ground types 𝜂 our logical relations

are functional. Having defined these logical relations, we establish the fundamental lemma by

induction on the structure of the program.

Proposition 3.2 (Fundamental lemma for vmap𝑛{·}). Let𝑛 ∈ N and 𝑥1 : 𝜏1, . . . , 𝑥𝑚 : 𝜏𝑚 ⊢ 𝑡 : 𝜏 .
If ((𝑣1

𝑗 , . . . , 𝑣
𝑛
𝑗),𝑤 𝑗) ∈ 𝑅𝜏 𝑗 for each 1 ≤ 𝑗 ≤𝑚, and if𝛾𝑖 := (𝑥1 ↦→ 𝑣𝑖

1
, . . . , 𝑥𝑚 ↦→ 𝑣𝑖𝑚) for each 1 ≤ 𝑖 ≤ 𝑛,

and 𝛾 ′ := (𝑥1 ↦→ 𝑤1, . . . , 𝑥𝑚 ↦→ 𝑤𝑚), then
((⟦𝑡⟧(𝛾1), . . . , ⟦𝑡⟧(𝛾𝑛)), ⟦vmap𝑛{𝑡}⟧(𝛾 ′)) ∈ 𝑅𝜏

The correctness of vmap𝑛{−} is obtained as a corollary of the fundamental lemma.

2
Recall that a relation is functional if it specifies a function, i.e., for every 𝑥 there is exactly one 𝑦 such that (𝑥, 𝑦) ∈ 𝑅.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:16 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Theorem 3.3 (Correctness of vmap𝑛{−}). If ⊢ 𝑡 : 𝑇 → 𝜏 is a closed program of function type,
then for all 𝑣 of type 𝑇 [𝑛]:
• 𝜏 ≡ 𝜂: ⟦vmap𝑛{𝑡}⟧(𝑣) = zip𝜂 (⟦𝑡⟧(𝑣 [1]), . . . , ⟦𝑡⟧(𝑣 [𝑛])), i.e. vmap𝑛{−} correctly vectorizes
deterministic functions.
• 𝜏 ≡ P 𝜂: ⟦vmap𝑛{𝑡}⟧(𝑣) = zip𝜂∗ (

⊗𝑛

𝑖=1
⟦𝑡⟧(𝑣 [𝑖])), i.e. vmap𝑛{−} produces vectors of inde-

pendent samples when applied to stochastic functions.
• 𝜏 ≡ G𝛾 𝜂: ⟦vmap𝑛{𝑡}⟧(𝑣) = (zip𝛾 ∗ (

⊗𝑛

𝑖=1
⟦𝑡⟧1 (𝑣 [𝑖])), 𝜆𝑟 .zip𝜂 (⟦𝑡⟧2 (𝑣 [1]) (unzip𝛾 (𝑟) [1]),

. . . , ⟦𝑡⟧2 (𝑣 [𝑛]) (unzip𝛾 (𝑟) [𝑛])) i.e. the trace distributions and return value maps of generative
functions vectorized by vmap𝑛{−} are vectorizations of the original generative functions’ trace
distributions and return value maps.

Here, zip𝜂 : ⟦𝜂⟧𝑛 → ⟦𝜂 [𝑛]⟧ is the bijection between 𝑛-fold products of values in ⟦𝜂⟧ and their
(struct-of-array) vectorized representations ⟦𝜂 [𝑛]⟧, with inverse unzip𝜂 : ⟦𝜂 [𝑛]⟧ → ⟦𝜂⟧𝑛 .

As an additional consequence of the fundamental lemma, we also get the following important

commutativity relations, which we exploit in our implementation (Section 4.2):

Corollary 3.4. Let ⊢ 𝑡 : G𝛾 𝜂 be a term of generative function type. Then:

• ⟦simulate{vmap𝑛{𝑡}}⟧ = ⟨𝑖𝑑, 𝑖𝑑, 𝑣 ↦→ ∏
𝑖 𝑣 [𝑖]⟩∗⟦vmap𝑛{simulate{𝑡}}⟧: a correct imple-

mentation of simulate{vmap𝑛{𝑡}} can be obtained by applying vmap𝑛{−} to simulate{𝑡}
and collapsing the returned vector of densities to a single density via multiplication.
• ⟦assess{vmap𝑛{𝑡}}⟧ = let 𝑎, 𝑏 = ⟦vmap𝑛{assess{𝑡}}⟧ in (𝑎,∏𝑖 𝑏 [𝑖]): a correct imple-
mentation of assess{vmap𝑛{𝑡}} can be obtained by applying vmap𝑛{−} to assess{𝑡} and
collapsing the returned vector of densities to a single density via multiplication.

See the supplementary material for proofs.

3.5 Stochastic Branching
We can extend our formal model with support for stochastic branching, allowing us to account for

vectorization of mixture models (including, e.g., the program in Fig. 6). To start, we add a construct

for stochastic branching with homogeneous gradings, cond(𝑡1, 𝑡2, 𝑡3, 𝑡4):

Γ ⊢ 𝑡1 : B𝑠 ⊢ 𝑡2 : 𝜂1 → G𝛾 𝜂2 ⊢ 𝑡3 : 𝜂1 → G𝛾 𝜂2 Γ ⊢ 𝑡4 : 𝜂1 [𝑠]
Γ ⊢ cond(𝑡1, 𝑡2, 𝑡3, 𝑡4) : G𝛾 [𝑠] 𝜂2 [𝑠]

.

The expression cond(𝑡1, 𝑡2, 𝑡3, 𝑡4), where 𝑡1 has type B𝑠
, denotes the generative function that

runs 𝑠-many independent executions of either 𝑡2 or 𝑡3, as selected by the provided Booleans in

𝑡1, with arguments provided by 𝑡4. Its trace distribution contains all 𝑠-many traces from these

executions, and its return value function computes the 𝑠-many return values they yielded. We

denote by vmap(𝑛1,...,𝑛𝑘) the composition of program transformations vmap𝑛1

◦ . . . ◦ vmap𝑛𝑘 and

by product : R[𝑛] → R a new primitive construct which multiplies all its arguments. Now, we

extend our program transformations to handle cond as follows. First, we define a useful lifting of

select to operate component-wise on traces:

select{𝑘1:𝜂1,...,𝑘𝑚 :𝜂𝑚 } (𝑏,𝑢,𝑢′) =
{𝑘1 : select𝜂1

(𝑏,𝑢 [𝑘1], 𝑢′ [𝑘1]), . . . , 𝑘𝑚 : select𝜂𝑚 (𝑏,𝑢 [𝑘𝑚], 𝑢′ [𝑘𝑚])},
select𝑇 𝑠 (𝑏, 𝑥,𝑦) = select(𝑏, 𝑥,𝑦),

with analogous clauses for products.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:17

simulate{cond(𝑡1, 𝑡2, 𝑡3, 𝑡4)} = doP{
(𝑢2, 𝑣2,𝑤2) ← vmap𝑠 {simulate{𝑡2}}(𝑡4);
(𝑢3, 𝑣3,𝑤3) ← vmap𝑠 {simulate{𝑡3}}(𝑡4);
let 𝑢sel = select𝛾 [𝑠] (𝑡1, 𝑢2, 𝑢3);
let 𝑣sel = select𝜂2 [𝑠] (𝑡1, 𝑣2, 𝑣3);
let𝑤sel = select(𝑡1,𝑤2,𝑤3);
return𝑃 (𝑢sel, 𝑣sel, product(𝑤sel))}

assess{cond(𝑡1, 𝑡2, 𝑡3, 𝑡4)} = 𝜆𝑢.

let (𝑣2,𝑤2) = vmap𝑠 {assess{𝑡2}}(𝑡4) (𝑢) in
let (𝑣3,𝑤3) = vmap𝑠 {assess{𝑡3}}(𝑡4) (𝑢) in
(select(𝑡1, 𝑣2, 𝑣3), product(select(𝑡1,𝑤2,𝑤3)))

vmap𝑛{cond(𝑡1, 𝑡2, 𝑡3, 𝑡4)} =
cond(vmap𝑛{𝑡1}, 𝑡2, 𝑡3, vmap𝑛{𝑡4})

Note that the use of vmap𝑠 within the simulate{} and assess{} transformations is sound because

vmap𝑠 is only applied to closed terms. Our correctness results extend to this enriched language.

All examples in the paper use the homogeneous form above. In §4, we discuss how our imple-

mentation pads traces with sentinel values to support heterogeneous gradings. The supplementary

material further extends our model to include generative primitives that internally use statically

bounded loops via the scan function.

4 Implementation

Generative functions

and inference programs

@gen-decorated Python programs

Generative function interface

Probabilistic JAX

array programs

vmap and seed
program transformations

XLA

Parallel Hardware

program

tracing

seed with JAX

PRNG

Probabilistic Automation Vectorization Automation

GenJAX

Shallow embedding in Python Probabilistic extension to JAX

Fig. 15. GenJAX: compiler for vectorized programmable inference. Our compiler architecture extends support
for JAX’s vmap transformation to generative functions. Users express generative functions as @gen-decorated
functions in Python. To support vmap, inference interfaces are transformed by GenJAX via program tracing
into an intermediate representation that extends JAX with probabilistic sampling primitives. To lower and
execute code, sampling primitives are eliminated by a seed transform, which allows GenJAX code to be
executed by XLA on GPUs.

In this section, we present the key ideas behind the actual implementation of GenJAX atop JAX.

An overview of our implementation is illustrated in Fig. 15. To expose an embedded Python DSL

for our compiler, our implementation makes use of lightweight effect handlers [8, 69] to implement

class methods corresponding to the program transformations presented in §3.1. When combined

with JAX’s support for program tracing (which performs partial evaluation on these lightweight

effect handlers, thereby evaluating them away), this implementation strategy allows us to concisely

embed our probabilistic interfaces and retain JAX compatibility.

4.1 Probabilistic Programming with Programmable Inference
GenJAX is implemented in Python, atop the JAX library for array programming [26].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:18 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Generative Functions. Generative functions are expressed by users as Python functions decorated

with @gen. The bodies of generative functions may invoke deterministic JAX primitives for numerics

and array programming, and draw string-named samples from primitive probability distributions

exposed by our library (e.g. x = normal(0, 1) @ "x"). The @gen decorator wraps the user’s program

into a GenerativeFunction object, with methods corresponding to the methods of the generative

function interface (simulate, assess, and others as described in Fig. 8).

Generative Function Interface Methods and Lightweight Effect Handling. When invoked, these

methods use lightweight effect handling to intercept samples from primitive distributions and calls

to other generative functions. Each method of the generative function interface defines its own

effect handler class, and a fresh instance is pushed onto a global stack of active handlers when

the method is invoked. The user’s probabilistic program is then run. When a tracing expression

is encountered (e.g., an expression of the form normal(0,1) @ "x"), control is transferred to the

topmost handler on the stack. For example, when tracing an invocation of a primitive distribution,

the handler object for simulate draws a sample from the specified distribution and records its

value in a running trace (mirroring the definition in §3 of the behavior of simulate on the trace
construct). Note that this strategy does not require delimited continuations or other heavy runtime

features of full effect-handling systems.

Nonetheless, dynamic effect handling—and the use of Python data structures such as mutable

dictionaries to accumulate traces—incurs some overhead. To eliminate this overhead, we rely on

JAX’s support for partial evaluation [27, 45, 62]. Given a generative function object, we run each

method (assess, simulate, etc.) with symbolic inputs, and all computation is staged into a Jaxpr, a
first-order array program in SSA form (see Fig. 16, right pane). At this point, all Python constructs,

including those used to dispatch to effect handlers, have been partially evaluated away, leaving

only JAX primitives. We extend JAX’s built-in Jaxpr type to support two new primitive operations,

sample_p for sampling a primitive distribution, and log_dens_p for evaluating the density of a

primitive distribution.
3

Traces. Traces are Python objects akin to dictionaries, which Jaxprs cannot directly manipulate.

We use a JAX feature that allows us to register our Trace class as a Pytree, JAX’s name for a nested

Python container of arrays that can be flattened to and rebuilt from a list of arrays, by defining

methods that convert traces to and from nested lists of arrays. These conversions are similar to

those used to define the semantics of record types in our formal model: recall that although the

syntax of a record type involves string-valued keys, our semantics maps every record type to a

simpler nested-tuples-of-arrays representation. The Jaxprs we generate operate on such nested

tuples of arrays.

4.2 Vectorization
Programmable Inference. Once a generative function method has been partially evaluated to a

Jaxpr, we can vectorize the method by transforming the Jaxpr. All JAX primitives have built-in

vectorized versions, analogous to the vectorized deterministic primitives in our formalization. We

include special logic to vectorize the sample_p primitive, implementing the behavior of vmap on

sample described in Section 3 (i.e., vectorized independent sampling).

Models / Generative Functions. To vectorize generative functions themselves (rather than just

the inference programs that operate on generative functions), we rely on the commutativity

result from §3 (Corollary 3.4). Generative function objects expose a vmap class method; calling

3log_dens_p is not strictly necessary, as log densities of individual primitive distributions can be implemented in terms

of existing JAX primitives, but adding it makes the Jaxprs easier to read and debug.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:19

it yields a new generative function object. Its simulate and assess methods are implemented by

applying vectorization to the simulate and assess methods of the original generative function, and

taking the product of the resulting vector of densities. Corollary 3.4 ensures that this is a correct

implementation of these methods for the vmapped version of the original generative function.

Traces. Because traces are Pytree types, when JAX vectorizes a function which returns a trace,

the returned vector of traces is represented as a nested-tuple-of-arrays. When a trace is constructed

using the Pytree interface from the vectorized arrays, it is automatically in struct-of-array repre-

sentation. This process, of identifying the "template" of a Pytree return value, using JAX to perform

a computation, and then zipping arrays into the "template," is illustrated in Fig. 16 (struct).

4.3 Stochastic Branching
To support usage of generative functions with stochastic branching, we make use of JAX’s

built-in primitive select_p. Using the types of our formal model, the signature of select_p is

select_p :: 𝑇B → 𝑇 → 𝑇 → 𝑇 (where𝑇B is a batched Boolean). The behavior under evaluation cor-

responds to multiplexing of arrays using the Boolean input array as a selector.
4
Using select_p, we

implement cond, which accepts two generative functions as inputs (corresponding to the branches

of a conditional) and builds a generative function that branches between them. The branches

are expected to accept the same types of arguments, and return the same type of value. cond can

be invoked with the B[𝑛] selector argument, and a vector of 𝑛 arguments to the branches. The

generative function interface methods are implemented as follows:

• For simulate, cond calls simulate on each of its branch generative functions. For returned densities,

select_p is applied, using the selector argument. For traces, we reason about named addresses: if

a name is used in both branches, the selector is used to select from the values of each branch.

Otherwise, the selector is used to either pass through the value, or assign NaN (not a number)5 to
the address. This means that, unlike our formalism, our implementation supports the use of cond

with branches that have heterogeneous trace types.

• For assess, cond calls assess on each of its branch generative functions. The same behavior as

simulate above is used, for both densities and return values. Some of the computed densities will

be NaN, but they will not be selected by select_p, so the product of selected densities will still be

a number.

The implementations for cond of the other generative function interface methods (Fig. 8) follow the

same strategies. Note that, in the variant described in our formal model (§3.5), the branches share a

homogeneous graded trace type so that the selector can merge their traces component-wise. As

mentioned above, our implementation supports heterogeneous grades by padding with NaN values.

(The examples in this paper, however, do not rely on this generalization.)

4.4 Statically Bounded Loops
Our implementation also allows for a generative analogue of jax.lax.scan for looping generative

functions. We provide a description of this extension in the supplementary material. The methods

of the generative function interface are implemented by applying jax.lax.scan to the callee’s

implementation of the interface methods: the trace is batched by stacking the per-iteration traces,

and densities are accumulated by combining the per-step contributions. The static bound restriction

is important: the scan length 𝑁 must be known during compilation because JAX requires static

shapes to compile to XLA. Because probabilistic program traces reify the shape of the computation

4
JAX does offer an explicit primitive for branching called cond_p, but under vmap, this primitive is automatically converted

to select_p, so our implementation uses select_p directly.

5
NaN is a special numeric value often used by numerical computing systems to represent undefined quantities.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:20 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

into a recording of the execution, dynamically bounded loops entail traces whose shapes and sizes

depend on runtime control flow – which directly violates JAX’s requirements.

4.5 Execution on GPU
To compile the final Jaxpr to GPU, we first must eliminate our new primitives (sample_p and

log_dens_p) so that the Jaxpr contains only standard (deterministic) JAX primitives. To do so,

we replace sample_p operations with JAX’s pseudorandom number generation primitives. These

primitives operate on explicitly passed (splittable) counter-based random seeds [76]. Our seed

transformation ensures that a random seed is split sufficiently many times for each vectorized call

to use independent randomness for each dimension of its output.

Order of vmap and seed. Note that it is essential that seeding happens after vectorization. Using

JAX’s built-in vmap on JAX programs that are already written to use JAX’s pseudorandom number

generators would lead each vectorized random sampling operation to generate the same random
number in every component of its output vector. By applying vectorization to a program with

an explicit probabilistic primitive (sample_p), and only then introducing random seeds, our imple-

mentation can ensure seeds are appropriately split before they are passed as input to vectorized

sampling operations.

5 Evaluation
We evaluate our language and compiler implementation on benchmarks and case studies designed

to assess the following criteria:

• (Performance) How does the performance of our compiler implementation compare to lead-

ing programmable inference systems? Do our abstractions introduce overhead compared to

handcoded implementations of inference? We survey the performance properties of GenJAX
against open-source PPLs and tensor frameworks on standard modeling and inference tasks, for both
embarrassingly-parallel algorithms (importance sampling) and iterative differentiable algorithms
(Hamiltonian Monte Carlo).
• (Inference Quality) vmap provides a convenient way to express inference problems over high-

dimensional spaces. Does our design provide the means to construct effective inference approxi-

mations for them?We study probabilistic Game of Life inversion on large boards using approximate
inference, and use GenJAX to construct an efficient nested vectorized Gibbs sampler. We study a
probabilistic model of robot localization using simulated LIDAR measurements, and use GenJAX
to iteratively construct sequential Monte Carlo [20, 23] (SMC) algorithms, including an efficient
algorithm using proposals with vectorized locally optimal grid approximations.

5.1 Performance Survey Evaluation
Figure 17 presents a performance survey of our system compared to open-source tensor frameworks

and PPLs across a handful of models and inference algorithms. In the top panel, we examine the

runtime characteristics of our compiler on importance sampling in a Beta-Bernoulli model. The

model infers the bias of a coin from observed flips, using a Beta(1,1) prior and Bernoulli likelihood.

We observe 50 flips, and construct a posterior approximation using importance sampling. The top

panel confirms that all frameworks accurately recover the true posterior distribution. GenJAX

achieves near-identical performance to handcoded JAX (100.1% relative time). The bottom panel of

Figure 17 presents performance results for importance sampling and Hamiltonian Monte Carlo

(HMC) [67] on the polynomial regression problem from §2. Importance sampling exhibits parallel

scaling with the number of particles: vectorized PPLs and tensor frameworks have near constant

scaling while the GPU is not saturated. HMC is run iteratively: here, the scaling is linear in the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:21

Shallow Embedding

What users write in Python
1 # Polynomial curve model
2 @gen
3 def polynomial():
4 a = normal(0, 1) @ "a"
5 b = normal(0, 1) @ "b"
6 c = normal(0, 1) @ "c"
7 return (a, b, c)
8

9 # Point model with noise
10 @gen
11 def point(x):
12 (a, b, c) = polynomial() @ "curve"
13 y_mean = a + b * x + c * x ** 2
14 y = normal(y_mean, 0.1) @ "obs"
15 return y
16

17 compile(simulate(point))(x)

What our compiler does

1 # First, use program tracing.
2 struct, expr = (
3 stage(simulate(point))(x)
4)

↓ struct
(stage) staging captures struct

as a data template in shallow embedding

Python structure of trace
Has 6 holes for array return values
struct = (
{ "curve": {

"a": •,
"b": •,
"c": •

}, "obs": • },
Log density Return value
•, •,

)

expr of
−−−−−→
simulate

Probabilistic JAX program

Probabilistic array program representation
which our vmap and seed transformations apply to

1 # Expr of simulate of point
2 lambda %x:f32[]. { let
3 %a: f32[] = sample_p(Normal, 0, 1)
4 %b: f32[] = sample_p(Normal, 0, 1)
5 %c: f32[] = sample_p(Normal, 0, 1)
6

7 # Polynomial evaluation
8 %l: f32[] = mul_p(%b, %x) # b*x
9 %s: f32[] = mul_p(%x, %x) # x^2
10 %q: f32[] = mul_p(%c, %s) # c*x^2
11 %s1: f32[] = add_p(%a, %l) # a + b*x
12 %ym: f32[] = add_p(%s1, %q) # a + b*x + c*x^2
13

14 # Observation
15 %y: f32[] = sample_p(Normal, %ym, 0.1)
16

17 # Density calculations
18 %lp_a: f32[] = log_dens_p(Normal, %a, 0, 1)
19 %lp_b: f32[] = log_dens_p(Normal, %b, 0, 1)
20 %lp_c: f32[] = log_dens_p(Normal, %c, 0, 1)
21 %lp_y: f32[] = log_dens_p(Normal, %y, %ym, 0.1)
22 %lp: f32[] = sum_p(%lp_a, %lp_b, %lp_c, %lp_y)
23

24 # 6 array return values for holes
25 return (%a, %b, %c, %y, %y, %lp)
26 }

↓ seed transformation
replaces sampling with PRNG routines

Pure JAX Operations

1 key_a, key_b, key_c, key_y = random.split(key, 4)
2 %a = random.normal(key_a) * 1.0 + 0.0
3 %b = random.normal(key_b) * 1.0 + 0.0
4 %c = random.normal(key_c) * 1.0 + 0.0
5 ...

Execution

Return value in shallow embedding
(
{ "curve": {

"a": 0.02,
"b": 1.3,
"c": 0.64

}, "obs": 2.3 },
Log density Return value
-0.676, 2.3,

)

Zip using struct
←−−−−−−−−−−−−

Trace, transform, and then execute

Pure JAX

executes using XLA

(Parallel Hardware)

Fig. 16. How our compiler works. (Left, top) Users write high-level probabilistic programs in Python. Interfaces
(simulate) use lightweight effect handlers to intercept @ operations during execution. Our compiler uses
program tracing (stage) to transform the implementation into an array program intermediate representation
with probabilistic primitives (right, top), and captures static host-language structure for the return type (left,
middle). (Right, bottom) The seed transformation eliminates probabilistic primitives for explicit pseudorandom
samplers, producing pure JAX operations for hardware execution. The result is executed via XLA, and returned
to our shallow embedding into the host-language structure.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:22 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

0.0 0.5 1.0Fairness Parameter

Ours
OursExact PosteriorTrue Mean: 0.714

0.0 0.5 1.0Fairness Parameter

Handcoded JAX
Handcoded JAXExact PosteriorTrue Mean: 0.714

0.0 0.5 1.0Fairness Parameter

NumPyro
NumPyroExact PosteriorTrue Mean: 0.714

0 25 50 75 100 125 150 175Relative Performance (% of Handcoded JAX time)
Handcoded Baseline

Handcoded 100.0% (0.105 ± 0.002ms)
Ours 100.4% (0.106 ± 0.002ms)
NumPyro 143.3% (0.151 ± 0.004ms)

(a) Beta-Bernoulli inference accuracy and timing comparison. Comparing the overhead of
inference approximations constructed via importance sampling using GenJAX’s abstractions
to handcoded JAX programs and NumPyro.

1,000 5,000 10,000(Importance Sampling) Number of Particles
10 2

100

102

104

Wa
ll c

loc
k ti

me
 (m

s)

1.2×1.6×
11× 26×

555×

1.1×3.0×
12× 26×

4107×

1.1×3.0×
14× 26×

8091×

0.03 ms

Smaller is better

Ours Handcoded JAX NumPyro Pyro Gen.jl Handcoded PyTorch

100 500 1,000(HMC) Chain Length
100

102

104

106

Wa
ll c

loc
k ti

me
 (m

s)

1.2×1.5×
11× 21× 48×

1.2×1.6×
11× 22× 34×

1.2×1.6×
12× 22× 26×

89.40 ms

Smaller is better

OursOurs Handcoded JAXOurs Handcoded JAX NumPyroOurs Handcoded JAX NumPyro PyroOurs Handcoded JAX NumPyro Pyro Gen.jlOurs Handcoded JAX NumPyro Pyro Gen.jl Handcoded PyTorch
(b) Polynomial regression survey. Comparing wall clock runtimes for importance sampling
and Hamiltonian Monte Carlo on polynomial regression (§2).

Fig. 17. Performance evaluation across probabilistic programming frameworks. (a) Beta-Bernoulli inference
comparing posterior accuracy and execution time for GenJAX, NumPyro, and handcoded JAX implementations
with 50 observations and 2000 samples, demonstrating importance sampling using GenJAX’s programmable
inference abstractions is competitive with handcoded performance. (b) Scaling analysis across six frameworks
showing GenJAX achieves performance is consistently near handcoded JAX and competitive with other
open-source PPLs, for both importance sampling and Hamiltonian Monte Carlo.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:23

length of the chain. GenJAX is consistently close to handcoded and optimized JAX, validating that

our abstractions for programmable inference introduce minimal overhead.

5.2 High-Dimensional Vectorized Inference
In this section, we illustrate the usage of GenJAX to develop two more involved applications of

modeling and inference: probabilistic inversion of Conway’s Game of Life [28] (a massive discrete

search problem over cellular automaton dynamics) and 2D robot localization (a subproblem in

simultaneous localization and mapping [24]).

Window centered at (𝒊, 𝒋)
Any live cell with fewer than two live
neighbors dies

Any live cell with at least 2, but not more than 3,
live neighbors survives

Any live cell with more than 3 neighbors dies

Evolution

(applied across (𝒊, 𝒋))

evolving
Conway’s Game

of Life forward

Conway’s Game of Life

Fig. 18. Deterministic evolution rules for Conway’s Game of Life. In our case study, we add a uniform prior
over board state, and probabilistic Bernoulli noise on top of the deterministic rules to construct a Game of
Life generative function. We can then condition the observed next state, and construct an inference problem
whose solutions correspond to approximate inversions of the Game of Life dynamics.

? inference

@gen GoL

Final Gibbs state Next step

t=0 t=166

t=332 t=499

Previous State Observed State Inversion via Gibbs One-Step Evolution

0 5 10 15 20 25 30 35 40Time per Gibbs sweep (ms)
512×512
256×256
128×128

64×64
32×32

Boa
rd

siz
e

17.0×
12.0×

8.0×
3.5×

1.5× GPU CPU

Fig. 19. Vectorized Gibbs sampling in theGame of Life. Probabilistic Game of Life inversion on the wizard book
cover [2] (1024×1024 grid). Top: (1) Previous state (unknown, the target of our inference process); (2) Observed
future state (the target pattern); (3) Vectorized Gibbs chain showing states constructed by inference in a
progression from 𝑡 = 0 to 𝑡 = 499; (4) One-step deterministic evolution of final inferred state, reconstruction
accuracy (measured as discrepancy between bits) is around 90%. Bottom: Benchmark timings of single
vectorized Gibbs sweep performance across board sizes, comparing CPU and GPU execution times. GPU
execution timings demonstrate the benefit of parallel hardware acceleration for vectorized inference. Overall:
the runtime takes about 2.8 seconds for 500 iterations on an RTX 4090 GPU, with about 93% reconstruction
accuracy (70,109 bits out of 1,048,576 total bits).

Probabilistic Game of Life Inversion. Game of Life (GoL) inversion is the problem of inverting

the dynamics of Conway’s Game of Life [28]: given a final state, what is a possible previous state

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:24 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

that evolves to the final state under the rules of the game (Fig. 18)? Brute force discrete search is

computationally intractable, requiring evaluation of 2
𝑁×𝑁

states, where 𝑁 is the linear dimension

of a square GoL game board. In this case study, we introduce probabilistic noise into the dynamics

of GoL: from an initial state, we evolve forward using the deterministic rules, but then sample with

Bernoulli noise around the true value of the state of each pixel (i.e., the observed value of a pixel has

a small chance of being opposite the true value). In Fig. 19, we illustrate approximate inversion using

vectorized Gibbs sampling [29]. Because each cell’s value is conditionally independent from non-

neighboring cells’ values, given its eight neighbors, we partition the board’s cells into conditionally

independent groups (given the other groups). Within each group, we can perform parallel Gibbs

updates on all the cells, an example of chromatic Gibbs [31]. The generative function representing

probabilistic GoL dynamics and the vectorized Gibbs algorithm are all written using GenJAX’s

abstractions. The result is a highly efficient probabilistic inversion algorithm which can invert Life

states with up to 90% accuracy in a few seconds.

Robot Localization. In robotics, simultaneous mapping and localization (SLAM) refers to the

problem of constructing a representation of the map of an environment and the position of the robot

within the map based on measurements (often, LIDAR-based measurements). If the map is given,

the problem is called localization (Fig. 20a): a robot maneuvers through a known space, and receives

measurements of distance to the walls. The goal is to construct a probabilistic representation of

where the robot is located. In this case study, we use GenJAX to write a model for robot localization,

with Gaussian drift dynamics and a simulated LIDAR measurement. Given a sequence of LIDAR

measurements over time as observations, we can then constrain the model to produce a posterior

over robot locations. In Fig. 20b, we develop several sequential Monte Carlo algorithms using

GenJAX’s programmable inference abstractions.

• The bootstrap filter [34] is sequential Monte Carlo where the prior (from the model) is used as

the proposal for the latent position of the robot.

• SMC + HMC adds HMC [67] moves to the bootstrap filter. These moves are applied to the

particle collection after resampling.

• SMC + Locally Optimal uses a smart proposal for the latent position of the robot based on

enumerative grids: the logic of the proposal is to enumerate a grid in position space, and evaluate

each position on the grid against the observation likelihood. The maximum likelihood grid point

is selected, and then a proposal for the position is sampled from a normal distribution around

that point.

SMC supports natural vectorization over particles. In our experiments, from the standpoint of

efficiency and accuracy, the best algorithm is locally optimal SMC, which adds another layer of

vectorization within the custom proposal. In the locally optimal grid approximation proposal,

the likelihood grid evaluations can be fully vectorized. Note that the model already features

vectorization: the LIDAR measurement model is vectorized as well. The development of this

algorithm illustrates the power of exposing vmap as an idiom: each of these opportunities for

vectorization (in the model, in the locally optimal proposal, and across the particle collection) are

convenient to program against with vmap, and lead to a highly efficient inference algorithm which

can accurately track the 2D robot’s location within the map in milliseconds.

6 Related Work
Probabilistic Programming. Early probabilistic languages such as Church [32], WebPPL [33], Ven-

ture [60, 61], and Anglican [82] prioritized modeling expressiveness over GPU inference. Domain-

specific probabilistic programming languages with GPU backends include Augur [85], which

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:25

t = 0

True distancesNoisy observationsRobot

t = 5 t = 11 t = 16

(a) The robot localization problem. Given a fixed map of the area, a robot must localize its location using
simulated LIDAR measurements: rays are cast out from the robot’s location, and a noisy measurements of
the distance to any intersecting object are returned. Given these measurements and the known map, the goal
is to construct a probability distribution over the location of the robot.

Bootstrap filter(N=200) SMC (N=200)+ HMC (K=25) SMC (N=5)+ Locally Optimal (L=25)

0 20 40 60 80 100 120 140Time (milliseconds)
135.3±2.4ms

51.4±2.7ms
2.4±0.0ms

(b) Comparison between SMC variants. SMC can be customized in various ways: custom proposals and
MCMC moves can be used to improve the accuracy of the algorithm. The best algorithm (SMC + Locally
Optimal) uses a custom proposal which uses vmap to evaluate positions on a grid using the data likelihood,
and then samples from a normal around the most promising grid point. Note that this custom inference
program is faster and more accurate (orange) than naive scale-up of a vectorized bootstrap filter (blue), and
faster and more accurate than a hybrid of SMC with Hamiltonian Monte Carlo rejuvenation (green).

Fig. 20. Robot localization using programmable sequential Monte Carlo. (a) Problem setup showing robot
trajectory through multi-room environment with 8-ray LIDAR sensor model for distance-based localization.
(b) Comparison of three SMC variants: Bootstrap filter, SMC+HMC, and SMC+Locally Optimal, showing
particle approximation evolution and execution time performance.

compiles Bayesian networks to data-parallel code; RootPPL [59], which targets CUDA for phy-

logenetic inference; Birch [65], which supports delayed sampling for particle filters and CUDA

execution; and Stan [14], which restricts models to fixed control flow for HMC.

GenJAX is an embedded probabilistic programming framework, leveraging JAX for differentiable

computation and JIT compilation for good performance on GPUs. In this respect, GenJAX is similar

to Edward/Edward2 [83, 84], PyMC3 [77], Pyro [8], and NumPyro [69], which respectively leverage

TensorFlow, PyTorch, and JAX to execute vectorized inference code on GPUs. Inference families

including Monte Carlo methods (for instance, Hamiltonian Monte Carlo [67]) and variational

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

87:26 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

inference methods [9, 46, 48, 71] often feature embarrassingly parallel subroutines, and benefit

from vectorization and GPU acceleration.

Compared to Pyro and NumPyro, GenJAX’s design is aimed at improving expressivity while

retaining vectorization opportunities. GenJAX’s cond construct is an example of this philosophy:

branches to cond are restricted to be valid GenJAX generative functions, which are less expressive

than Pyro’s modeling language. However, cond supports stochastic branching and is fully compatible

with vmap. In contrast, neither NumPyro nor Pyro support a stochastic branching primitive. Instead,

users of these systems emulate stochastic branching manually, by inlining branches into model code,

and using masking operations on distributions. Also, Pyro’s plate construct for model vectorization

is implemented as an effect handler that alters the meaning of array operations. In contrast, by using

an approach based on program transformation, GenJAX allows users to freely nest vectorization of

models and inference algorithms, and use ordinary JAX constructs within models for stochastic

branching. GenJAX also supports vectorized implementations of generative functions [19], and

custom inference programs that interleave automated and hand-optimized implementations of

the generative function interface. The benchmarks in this paper show GenJAX delivers these

capabilities while maintaining competitive performance to NumPyro and introducing low overhead

relative to hand-optimized JAX. The programming model for users of GenJAX is similar to Pyro

and NumPyro: users are required to make use of vmap in their code to benefit from vectorization.

Recent work [55] explores automating vectorization of sequential data-dependent loops without

requiring user annotation using speculative execution, iterative correction, and fixed-point checks:

this work could be integrated into GenJAX via a new type of generative function whose internal

logic uses vmap to implement this vectorization technique.

Data-Parallel and Array Programming. Our work builds directly on JAX [26], which itself builds

on foundational languages for data-parallel array programming. NESL [10] introduced the idea that

nested parallelism can make use of program transformations: flattening converts nested operations

like {sum(a) : a in arrays} into operations on flat vectors, an idea reincarnated into JAX in

the form of JAX’s Pytree interface. APL [43] and J [40] introduced rank polymorphism to array

programming: operations work uniformly across dimensions, which has been translated into axis-

specified reduction primitives in NumPy [37] and JAX. Modern array programming frameworks in

Python (NumPy [37], TensorFlow [1], PyTorch [68], JAX [26]) have brought significant attention

to array programming from data science and artificial intelligence research. JAX’s vmap inherits
NESL’s transformation-based parallelism but focuses on deterministic computation.

Partial Evaluation and Staged Computation. Partial evaluation [27, 44, 45, 62] and multi-stage

programming [80] have played a significant role in the development of techniques for program
tracing, which JAX relies upon to support program transformation and compositional interpreters

as program transformers. GenJAX relies upon JAX’s support for program tracing to extend vmap
to work on probabilistic constructs. Additionally, JAX’s program tracing is used to eliminate the

overhead of GenJAX’s lightweight effect handler implementations of the generative function

interface. Several PPLs have made use of partial evaluation to improve the accuracy or runtime of

inference: Hakaru [66] can partially evaluate a subset of its programs to closed form when possible,

Gen [19] supports trace data structure specialization on the structure of generative functions in its

static modeling language.

Formalization of Sound Bayesian Inference. Vectorization poses interesting questions for sound-

ness: operations which are correct pointwise should preserve measure-theoretic properties when

lifted to operate on arrays. In our formal model and soundness results, we rely on the quasi-Borel

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

Probabilistic Programming with Vectorized Programmable Inference 87:27

space framework [39] to construct our denotational semantics. Several works influenced our devel-

opment: Borgström et al. [11] establishes lambda-calculus foundations for universal PPLs; Šcibior

et al. [78] validates that transformations preserve Bayesian soundness. Our system extends vmap to

work with probabilistic program traces and programmable inference interfaces, and we rely on

several prior semantic developments, including Lew et al. [50], which introduced trace typing for

ensuring proposal-model alignment in programmable inference algorithms, and Lew et al. [54],

which developed a denotational semantics model for programmable inference with traces, using a

graded monad similar to ours to track a trace’s shape. We build on these works by giving a model

for how vectorization interacts with programmable inference features like tracing. Following works

like [7, 42, 52, 54], our formal developments also rely on logical relations arguments to reason about

the correctness of probabilistic program transformations.

7 Conclusion
This work presents GenJAX, a language and compiler for vectorized probabilistic programming

with programmable inference. This system integrates vmap with programmable inference features:

we extend vmap support to generative functions, including support for vectorization using vmap of

probabilistic program traces, stochastic branching, and programmable inference interfaces. Bench-

marks show this approach yields low overhead relative to hand-optimized JAX, and simultaneously

delivers greater expressiveness and competitive performance with other probabilistic programming

systems targeting modern accelerators.

Future Work. We comment on several avenues for future work:

• Vectorized inference diagnostics. By automating the vectorized implementation of nested

models and inference algorithms, GenJAX makes it easy to experiment with parallel implemen-

tations of custom Monte Carlo estimators of a broad range of information-theoretic quantities

derived from probabilistic programs [18, 22, 73, 75], including KL divergence between inference

algorithms and the conditional mutual information among subsets of latent variables. Although

computationally intensive on CPUs, these estimators are comprised of nested, massively parallel

computations, and may become more practical and widespread given suitable automation.

• Spatial or geometric probabilistic programs. We expect that GenJAX’s support for array

programming and programmable probabilistic inference may be well-suited for spatial comput-

ing applications. Domains such as robotics, autonomous navigation, computational imaging,

and scientific simulation increasingly require sophisticated probabilistic reasoning over high-

dimensional spatial data—including LiDAR point clouds, depth images, and other spatial data

types. Probabilistic programming applications in these domains naturally involve computa-

tions that manipulate multi-dimensional arrays. GenJAX’s design is uniquely suited to support

practitioners writing these types of probabilistic programs, and provides useful vectorization

automation and support for compilation to efficient GPU implementations.

Data-Availability Statement
The artifact associated with this paper is available on Zenodo [6]. The source code is available at

https://github.com/probcomp/genjax [63].

Acknowledgments
The authors acknowledge Arijit Dasgupta, Andrew Bolton, João Loula, Nishad Gothoskar, Matin

Ghavami, Eric Li, Ian Limarta, Jay Pottharst, Jack Rusher, Matt Huebert, David R. MacIver, Mirko

Klukas, Fabian Zaiser, Ben Lee, Brian Patton, Jacob Burnhim, Christopher Suter, Urs Köster, Nathan

Cloos, Pierre Glaser, and Alex Hiser for assisting in the development of our system.We acknowledge

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://github.com/probcomp/genjax

87:28 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

Sharad Vikram and Matthew Johnson for useful discussions about JAX. We acknowledge SamWitty,

Tan Zhi-Xuan, Timothy O’Donnell, and Josh Tenenbaum for helpful discussions concerning our

work. We acknowledge Karen Laska Pierro for support during preparation of this work. This work

was supported in part by CoCoSys, one of seven centers in JUMP 2.0, a Semiconductor Research

Corporation (SRC) program sponsored by DARPA.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. doi:10.48550/arXiv.1603.04467 Software available from tensorflow.org.

[2] Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of Computer Programs, Second Edition. MIT

Press, Cambridge, MA, USA.

[3] Alwa Alanqary, Gloria Z. Lin, Joie Le, Tan Zhi-Xuan, Vikash Mansinghka, and Josh Tenenbaum. 2021. Modeling the

Mistakes of Boundedly Rational Agents Within a Bayesian Theory of Mind. Proceedings of the Annual Meeting of the
Cognitive Science Society 43, 43 (2021). doi:10.48550/arXiv.2106.13249

[4] Chris L. Baker, Rebecca R. Saxe, and Joshua B. Tenenbaum. 2011. Bayesian Theory of Mind: Modeling Joint Belief-Desire

Attribution. In Proceedings of the 33rd Annual Conference of the Cognitive Science Society. Cognitive Science Society,
Boston, MA, USA, 2469–2474. https://escholarship.org/uc/item/5rk7z59q

[5] Atilim Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence Meadows, Jialin Liu, Andreas Munk,

Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Victor Lee, Kyle

Cranmer, Prabhat, and Frank Wood. 2019. Etalumis. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’19). Association for Computing Machinery, New York, NY, USA,

1–24. doi:10.1145/3295500.3356180

[6] McCoy R. Becker, Mathieu Huot, George Matheos, XiaoyanWang, Karen Chung, Colin Smith, Sam Ritchie, Alexander K.

Lew, Martin Rinard, and Vikash K. Mansinghka. 2025. GenJAX: Probabilistic Programming with Vectorized Programmable
Inference. doi:10.5281/zenodo.17594132

[7] McCoy R. Becker, Alexander K. Lew, Xiaoyan Wang, Matin Ghavami, Mathieu Huot, Martin C. Rinard, and Vikash K.

Mansinghka. 2024. Probabilistic Programming with Programmable Variational Inference. Proc. ACM Program. Lang. 8,
PLDI (June 2024), 2123–2147. doi:10.1145/3656463

[8] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit

Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. 2018. Pyro: Deep Universal Probabilistic Programming.

Journal of Machine Learning Research 20, 28 (2018), 1–6. doi:10.48550/arXiv.1810.09538

[9] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2017. Variational Inference: A Review for Statisticians. J. Amer.
Statist. Assoc. 112, 518 (2017), 859–877. doi:10.1080/01621459.2017.1285773

[10] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco Zagha. 1993. Implementation

of a portable nested data-parallel language. J. Parallel and Distrib. Comput. 21, 1 (1993), 4–14. doi:10.1006/jpdc.1994.1031
[11] Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A lambda-calculus foundation for

universal probabilistic programming. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming. ACM, New York, NY, USA, 33–46. doi:10.1145/2951913.2951942

[12] Monica F. Bugallo, Victor Elvira, Luca Martino, David Luengo, Joaquin Miguez, and Petar M. Djuric. 2017. Adaptive

Importance Sampling: The past, the present, and the future. IEEE Signal Processing Magazine 34, 4 (July 2017), 60–79.

doi:10.1109/MSP.2017.2699226

[13] Olivier Cappé, Randal Douc, Arnaud Guillin, Jean-Michel Marin, and Christian P. Robert. 2008. Adaptive importance

sampling in general mixture classes. Statistics and Computing 18, 4 (Dec. 2008), 447–459. doi:10.1007/s11222-008-9059-x
[14] Bob Carpenter, AndrewGelman, MatthewD. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,

Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical
Software 76, 1 (2017), 1–32. doi:10.18637/jss.v076.i01

[15] Katherine M. Collins, Ilia Sucholutsky, Umang Bhatt, Kartik Chandra, Lionel Wong, Mina Lee, Cedegao E. Zhang,

Tan Zhi-Xuan, Mark Ho, Vikash Mansinghka, Adrian Weller, Joshua B. Tenenbaum, and Thomas L. Griffiths. 2024.

Building Machines that Learn and Think with People. doi:10.48550/arXiv.2408.03943 arXiv:2408.03943 [cs].

[16] Aidan Curtis, George Matheos, Nishad Gothoskar, Vikash Mansinghka, Joshua B. Tenenbaum, Tomás Lozano-Pérez,

and Leslie Pack Kaelbling. 2024. Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.2106.13249
https://escholarship.org/uc/item/5rk7z59q
https://doi.org/10.1145/3295500.3356180
https://doi.org/10.5281/zenodo.17594132
https://doi.org/10.1145/3656463
https://doi.org/10.48550/arXiv.1810.09538
https://doi.org/10.1080/01621459.2017.1285773
https://doi.org/10.1006/jpdc.1994.1031
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1109/MSP.2017.2699226
https://doi.org/10.1007/s11222-008-9059-x
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.48550/arXiv.2408.03943

Probabilistic Programming with Vectorized Programmable Inference 87:29

In Robotics: Science and Systems XX, Delft, The Netherlands, July 15-19, 2024, Dana Kulic, Gentiane Venture, Kostas E.
Bekris, and Enrique Coronado (Eds.). Robotics: Science and Systems Foundation, Delft, The Netherlands, 118:1–118:9.

doi:10.15607/RSS.2024.XX.118

[17] Marco F. Cusumano-Towner, Alexander K. Lew, and Vikash K. Mansinghka. 2020. Automating Involutive MCMC

using Probabilistic and Differentiable Programming. CoRR abs/2007.09871 (July 2020). doi:10.48550/arXiv.2007.09871

arXiv:2007.09871 [cs.LG]

[18] Marco F. Cusumano-Towner and Vikash K. Mansinghka. 2017. AIDE: An algorithm for measuring the accuracy of prob-

abilistic inference algorithms. CoRR abs/1705.07224 (Nov. 2017). doi:10.48550/arXiv.1705.07224 arXiv:1705.07224 [cs.AI]

[19] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: a general-purpose

probabilistic programming systemwith programmable inference. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, New York, NY, USA, 221–236. doi:10.1145/3314221.3314642

[20] Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. 2006. Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68, 3 (June 2006), 411–436. doi:10.1111/j.1467-9868.2006.00553.x

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum Likelihood from Incomplete Data Via the EM Algorithm.

Journal of the Royal Statistical Society: Series B (Methodological) 39, 1 (Sept. 1977), 1–22. doi:10.1111/j.2517-6161.1977.
tb01600.x

[22] Justin Domke. 2021. An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over

Simulations. CoRR abs/2103.01030 (Feb. 2021). doi:10.48550/arXiv.2103.01030

[23] Arnaud Doucet, Nando de Freitas, and Neil Gordon (Eds.). 2001. Sequential Monte Carlo Methods in Practice. Springer-
Verlag, New York. doi:10.1007/978-1-4757-3437-9

[24] Hugh Durrant-Whyte and Tim Bailey. 2006. Simultaneous localization and mapping: part I. IEEE Robotics & Automation
Magazine 13, 2 (2006), 99–110. doi:10.1109/MRA.2006.1638022

[25] Shai Fine, Yoram Singer, and Naftali Tishby. 1998. The Hierarchical Hidden Markov Model: Analysis and Applications.

Machine Learning 32, 1 (July 1998), 41–62. doi:10.1023/A:1007469218079

[26] Roy Frostig, Matthew James Johnson, and Chris Leary. 2018. Compiling machine learning programs via high-level

tracing. SysML 2018.

[27] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process, Revisited. Higher-Order and Symbolic Computa-
tion 12, 4 (Dec. 1999), 377–380. doi:10.1023/A:1010043619517

[28] Martin Gardner. 1970. The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific American 223,

4 (1970), 120–123. doi:10.1038/scientificamerican1070-120

[29] Stuart Geman and Donald Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of

images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6, 6 (1984), 721–741. doi:10.1109/TPAMI.

1984.4767596

[30] Walter R. Gilks and Carlo Berzuini. 2001. Following a Moving Target: Monte Carlo Inference for Dynamic Bayesian

Models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63, 1 (2001), 127–146. doi:10.1111/1467-
9868.00280

[31] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. 2011. Parallel Gibbs Sampling: From Colored

Fields to Thin Junction Trees. In AISTATS (JMLR Proceedings, Vol. 15). JMLR.org, Fort Lauderdale, FL, USA, 324–332.

https://proceedings.mlr.press/v15/gonzalez11a.html

[32] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a

language for generative models. In Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. AUAI
Press, Corvallis, OR, USA, 220–229. doi:10.48550/arXiv.1206.3255

[33] Noah D. Goodman and Andreas Stuhlm"uller. 2014. The Design and Implementation of Probabilistic Programming

Languages. http://dippl.org Electronic; retrieved 2025-07-13.

[34] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state

estimation. IEE Proceedings F (Radar and Signal Processing) 140, 2 (1993), 107–113. doi:10.1049/ip-f-2.1993.0015
[35] Nishad Gothoskar, Marco Cusumano-Towner, Ben Zinberg, Matin Ghavamizadeh, Falk Pollok, Austin Garrett, Joshua B.

Tenenbaum, Dan Gutfreund, and Vikash K. Mansinghka. 2021. 3DP3: 3D Scene Perception via Probabilistic Program-

ming. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), Vol. 34. Curran Associates, Inc., Virtual.

doi:10.48550/arXiv.2111.00312

[36] Peter J. Green. 1995. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.

Biometrika 82, 4 (1995), 711–732. doi:10.2307/2337340 Publisher: [Oxford University Press, Biometrika Trust].

[37] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,

Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H.

van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-

Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.

2020. Array programming with NumPy. Nature 585, 7825 (2020), 357–362. doi:10.1038/s41586-020-2649-2

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.15607/RSS.2024.XX.118
https://doi.org/10.48550/arXiv.2007.09871
https://arxiv.org/abs/2007.09871
https://doi.org/10.48550/arXiv.1705.07224
https://arxiv.org/abs/1705.07224
https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.48550/arXiv.2103.01030
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1023/A:1007469218079
https://doi.org/10.1023/A:1010043619517
https://doi.org/10.1038/scientificamerican1070-120
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1111/1467-9868.00280
https://doi.org/10.1111/1467-9868.00280
https://proceedings.mlr.press/v15/gonzalez11a.html
https://doi.org/10.48550/arXiv.1206.3255
http://dippl.org
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.48550/arXiv.2111.00312
https://doi.org/10.2307/2337340
https://doi.org/10.1038/s41586-020-2649-2

87:30 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

[38] W. K. Hastings. 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57, 1
(1970), 97–109. doi:10.2307/2334940 Publisher: [Oxford University Press, Biometrika Trust].

[39] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A convenient category for higher-order

probability theory. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, Reykjavik,
Iceland, 1–12. doi:10.1109/LICS.2017.8005137

[40] Roger K.W. Hui, Kenneth E. Iverson, Eugene E. McDonnell, and Arthur T. Whitney. 1990. APL? APL Quote Quad 20, 4

(1990). http://www.jsoftware.com/papers/J1990.htm Proceedings of APL90, Copenhagen.

[41] Mathieu Huot, Matin Ghavami, Alexander K. Lew, Ulrich Schaechtle, Cameron E. Freer, Zane Shelby, Martin C. Rinard,

Feras A. Saad, and Vikash K. Mansinghka. 2024. GenSQL: A Probabilistic Programming System for Querying Generative

Models of Database Tables. Proc. ACM Program. Lang. 8, PLDI (June 2024), 790–815. doi:10.1145/3656409
[42] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2020. Correctness of automatic differentiation via diffeologies and

categorical gluing. In Foundations of Software Science and Computation Structures (FoSSaCS 2020) (Lecture Notes in
Computer Science, Vol. 12077). Springer, Cham, Switzerland, 319–338. doi:10.1007/978-3-030-45231-5_17

[43] Kenneth E. Iverson. 1962. A Programming Language. John Wiley and Sons, New York, NY, USA.

[44] Neil D. Jones. 1996. An introduction to partial evaluation. Comput. Surveys 28, 3 (Sept. 1996), 480–503. doi:10.1145/
243439.243447

[45] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Prentice
Hall, Englewood Cliffs, NJ, USA.

[46] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. 1999. An Introduction to Variational

Methods for Graphical Models. Machine Learning 37, 2 (1999), 183–233. doi:10.1023/A:1007665907178

[47] Chang-Jin Kim. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60, 1 (Jan. 1994), 1–22.
doi:10.1016/0304-4076(94)90036-1

[48] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In 2nd International Conference on
Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. doi:10.48550/
arXiv.1312.6114

[49] Alexander K. Lew, Monica Agrawal, David Sontag, and Vikash K. Mansinghka. 2020. PClean: Bayesian Data Cleaning

at Scale with Domain-Specific Probabilistic Programming. In International Conference on Artificial Intelligence and
Statistics. PMLR, Virtual Event, 1927–1935. doi:10.48550/arXiv.2007.11838

[50] Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2019.

Trace types and denotational semantics for sound programmable inference in probabilistic languages. Proc. ACM
Program. Lang. 4, POPL (2019), 19:1–19:32. doi:10.1145/3371087

[51] Alexander K. Lew, Matin Ghavamizadeh, Martin C. Rinard, and Vikash K. Mansinghka. 2023. Probabilistic Programming

with Stochastic Probabilities. Proc. ACM Program. Lang. 7, PLDI (2023), 1708–1732. doi:10.1145/3591290
[52] Alexander K. Lew,Mathieu Huot, Sam Staton, and Vikash K. Mansinghka. 2023. ADEV: Sound Automatic Differentiation

of Expected Values of Probabilistic Programs. Proc. ACM Program. Lang. 7, POPL (Jan. 2023), 121–153. doi:10.1145/

3571198

[53] Alexander K. Lew, George Matheos, Tan Zhi-Xuan, Matin Ghavamizadeh, Nishad Gothoskar, Stuart Russell, and

Vikash K. Mansinghka. 2023. SMCP3: Sequential Monte Carlo with Probabilistic Program Proposals. In International
Conference on Artificial Intelligence and Statistics, 25-27 April 2023, Palau de Congressos, Valencia, Spain (Proceedings of
Machine Learning Research, Vol. 206), Francisco J. R. Ruiz, Jennifer G. Dy, and Jan-Willem van de Meent (Eds.). PMLR,

Valencia, Spain, 7061–7088. https://proceedings.mlr.press/v206/lew23a.html

[54] Alexander K. Lew, Eli Sennesh, Jan-Willem Van De Meent, and Vikash K. Mansinghka. 2023. Semantics of Probabilistic

Program Traces. In LAFI 2023 at POPL (Boston, MA). ACM, Boston, MA, USA. https://popl23.sigplan.org/details/lafi-

2023-papers/1/Semantics-of-Probabilistic-Program-Traces

[55] Sangho Lim, Hyoungjin Lim, Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2025. Optimising Density Computations

in Probabilistic Programs via Automatic Loop Vectorisation. doi:10.48550/arXiv.2511.11070 arXiv:2511.11070 [cs.PL]

[56] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski. 2017. Bayesian

Learning and Inference in Recurrent Switching Linear Dynamical Systems. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. PMLR, Fort Lauderdale, FL, USA, 914–922. https://proceedings.mlr.

press/v54/linderman17a.html ISSN: 2640-3498.

[57] Benjamin Lipkin, Benjamin LeBrun, Jacob Hoover Vigly, João Loula, David R. MacIver, Li Du, Jason Eisner, Ryan

Cotterell, Vikash Mansinghka, Timothy J. O’Donnell, Alexander K. Lew, and Tim Vieira. 2025. Fast Controlled

Generation from Language Models with Adaptive Weighted Rejection Sampling. doi:10.48550/arXiv.2504.05410

arXiv:2504.05410 [cs].

[58] João Loula, Benjamin LeBrun, Li Du, Ben Lipkin, Clemente Pasti, Gabriel Grand, Tianyu Liu, Yahya Emara, Marjorie

Freedman, Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Alexander K. Lew, Tim Vieira, and Timothy J. O’Donnell.

2025. Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo. CoRR abs/2504.13139

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.2307/2334940
https://doi.org/10.1109/LICS.2017.8005137
http://www.jsoftware.com/papers/J1990.htm
https://doi.org/10.1145/3656409
https://doi.org/10.1007/978-3-030-45231-5_17
https://doi.org/10.1145/243439.243447
https://doi.org/10.1145/243439.243447
https://doi.org/10.1023/A:1007665907178
https://doi.org/10.1016/0304-4076(94)90036-1
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.2007.11838
https://doi.org/10.1145/3371087
https://doi.org/10.1145/3591290
https://doi.org/10.1145/3571198
https://doi.org/10.1145/3571198
https://proceedings.mlr.press/v206/lew23a.html
https://popl23.sigplan.org/details/lafi-2023-papers/1/Semantics-of-Probabilistic-Program-Traces
https://popl23.sigplan.org/details/lafi-2023-papers/1/Semantics-of-Probabilistic-Program-Traces
https://doi.org/10.48550/arXiv.2511.11070
https://arxiv.org/abs/2511.11070
https://proceedings.mlr.press/v54/linderman17a.html
https://proceedings.mlr.press/v54/linderman17a.html
https://doi.org/10.48550/arXiv.2504.05410

Probabilistic Programming with Vectorized Programmable Inference 87:31

(2025). doi:10.48550/arXiv.2504.13139 arXiv:2504.13139

[59] Daniel Lundén, Joey Öhman, Jan Kudlicka, Viktor Senderov, Fredrik Ronquist, and David Broman. 2022. Compiling

Universal Probabilistic Programming Languages with Efficient Parallel Sequential Monte Carlo Inference. In Program-
ming Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held as Part of ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer,

Munich, Germany, 29–56. doi:10.1007/978-3-030-99336-8_2

[60] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a higher-order probabilistic programming platform

with programmable inference. CoRR abs/1404.0099 (2014). doi:10.48550/arXiv.1404.0099 arXiv:1404.0099 [cs.AI]

[61] Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018.

Probabilistic programming with programmable inference. ACM SIGPLAN Notices 53, 4 (2018), 603–616. doi:10.1145/
3296979.3192409

[62] Stefan Marr and Stéphane Ducasse. 2015. Tracing vs. partial evaluation: comparing meta-compilation approaches

for self-optimizing interpreters. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015). Association for Computing Machinery, New York,

NY, USA, 821–839. doi:10.1145/2814270.2814275

[63] MIT Probabilistic Computing Project. 2025. GenJAX: Source Code Repository. https://github.com/probcomp/genjax

[64] Kevin P. Murphy and Mark A. Paskin. 2001. Linear-time inference in Hierarchical HMMs. In Advances in Neural
Information Processing Systems 14: NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada, Thomas G.

Dietterich, Suzanna Becker, and Zoubin Ghahramani (Eds.). MIT Press, Vancouver, BC, Canada, 833–840. https:

//proceedings.neurips.cc/paper/2001/hash/aebf7782a3d445f43cf30ee2c0d84dee-Abstract.html

[65] Lawrence Murray, Daniel Lundén, Jan Kudlicka, David Broman, and Thomas Schön. 2018. Delayed Sampling and

Automatic Rao-Blackwellization of Probabilistic Programs. In Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 84). PMLR, Lanzarote, Canary

Islands, 1037–1046. doi:10.48550/arXiv.1708.07787

[66] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic

inference by program transformation in Hakaru (system description). In International Symposium on Functional and
Logic Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer,
Cham, Switzerland, 62–79. doi:10.1007/978-3-319-29604-3_5

[67] Radford M Neal. 2011. MCMC using Hamiltonian dynamics. In Handbook of Markov chain Monte Carlo. Chapman and

Hall/CRC, Boca Raton, FL, USA, 113–162. doi:10.48550/arXiv.1206.1901

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,

Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman

Garnett (Eds.). Curran Associates, Inc., Vancouver, BC, Canada, 8024–8035. doi:10.48550/arXiv.1912.01703

[69] Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019. Composable Effects for Flexible and Accelerated Probabilistic

Programming in NumPyro. CoRR abs/1912.11554 (2019). doi:10.48550/arXiv.1912.11554 arXiv:1912.11554 [cs.LG]

[70] Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-performance CPU programming. In 2012
Innovative Parallel Computing (InPar). IEEE, San Jose, CA, USA, 1–13. doi:10.1109/InPar.2012.6339601

[71] Rajesh Ranganath, Sean Gerrish, and David M. Blei. 2014. Black Box Variational Inference. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 33). PMLR, Reykjavik, Iceland, 814–822. doi:10.48550/arXiv.1401.0118

[72] Feras Saad, Brian Patton, Matthew Douglas Hoffman, Rif A. Saurous, and Vikash Mansinghka. 2023. Sequential Monte

Carlo Learning for Time Series Structure Discovery. In International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma

Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, Honolulu, HI, USA,

29473–29489. doi:10.48550/arXiv.2307.09607

[73] Feras A. Saad, Marco Cusumano-Towner, and Vikash K. Mansinghka. 2022. Estimators of Entropy and Infor-

mation via Inference in Probabilistic Models. CoRR abs/2202.12363 (April 2022). doi:10.48550/arXiv.2202.12363

arXiv:2202.12363 [cs.LG]

[74] Feras A. Saad, Marco F. Cusumano-Towner, Ulrich Schaechtle, Martin C. Rinard, and Vikash K. Mansinghka. 2019.

Bayesian synthesis of probabilistic programs for automatic data modeling. Proc. ACM Program. Lang. 3, POPL (Jan.

2019), 37:1–37:32. doi:10.1145/3290350

[75] Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, and Vikash K. Mansinghka. 2019. A Family of Exact

Goodness-of-Fit Tests for High-Dimensional Discrete Distributions. CoRR abs/1902.10142 (Feb. 2019). doi:10.48550/

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.48550/arXiv.2504.13139
https://arxiv.org/abs/2504.13139
https://doi.org/10.1007/978-3-030-99336-8_2
https://doi.org/10.48550/arXiv.1404.0099
https://arxiv.org/abs/1404.0099
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/2814270.2814275
https://github.com/probcomp/genjax
https://proceedings.neurips.cc/paper/2001/hash/aebf7782a3d445f43cf30ee2c0d84dee-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/aebf7782a3d445f43cf30ee2c0d84dee-Abstract.html
https://doi.org/10.48550/arXiv.1708.07787
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.48550/arXiv.1206.1901
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.11554
https://arxiv.org/abs/1912.11554
https://doi.org/10.1109/InPar.2012.6339601
https://doi.org/10.48550/arXiv.1401.0118
https://doi.org/10.48550/arXiv.2307.09607
https://doi.org/10.48550/arXiv.2202.12363
https://arxiv.org/abs/2202.12363
https://doi.org/10.1145/3290350
https://doi.org/10.48550/arXiv.1902.10142
https://doi.org/10.48550/arXiv.1902.10142

87:32 Becker, Huot, Matheos, Wang, Chung, Smith, Ritchie, Saurous, Lew, Rinard, Mansinghka

arXiv.1902.10142 arXiv:1902.10142 [cs.LG]

[76] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel random numbers: as easy as 1, 2, 3. In

Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’11).
Association for Computing Machinery, New York, NY, USA, 1–12. doi:10.1145/2063384.2063405

[77] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using

PyMC3. PeerJ Computer Science 2 (April 2016), e55. doi:10.7717/peerj-cs.55 Publisher: PeerJ Inc..

[78] Adam Šcibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss,

Chris Heunen, and Zoubin Ghahramani. 2017. Denotational validation of higher-order Bayesian inference. Proc. ACM
Program. Lang. 2, POPL (2017), 60:1–60:29. doi:10.1145/3158148

[79] Sam Stites, Heiko Zimmermann, Hao Wu, Eli Sennesh, and Jan-Willem van de Meent. 2021. Learning proposals for

probabilistic programs with inference combinators. In Proceedings of the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence. PMLR, Virtual, 1056–1066. doi:10.48550/arXiv.2103.00668 ISSN: 2640-3498.

[80] Walid Taha. 1999. Multi-stage programming: its theory and applications. In Applied Semantics Summer School. Springer,
Caminha, Portugal, 145–174.

[81] Luke Tierney. 1994. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics 22, 4 (Dec. 1994),
1701–1728. doi:10.1214/aos/1176325750 Publisher: Institute of Mathematical Statistics.

[82] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and Implementation of

Probabilistic Programming Language Anglican. ACM Transactions on Programming Languages and Systems 40, 4 (2016),
1–46. doi:10.1145/3064899

[83] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, and David M. Blei. 2017. Deep

Probabilistic Programming. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net, Toulon, France. doi:10.48550/arXiv.1701.03757

[84] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and David M. Blei. 2016. Edward: A

library for probabilistic modeling, inference, and criticism. CoRR abs/1610.09787 (2016). doi:10.48550/arXiv.1610.09787

arXiv:1610.09787 [stat.ML]

[85] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam Craig Pocock, Stephen J. Green, and Guy L. Steele Jr.

2014. Augur: Data-Parallel Probabilistic Modeling. In Advances in Neural Information Processing Systems 27 (NIPS 2014).
Curran Associates, Inc., Montréal, Canada, 2600–2608. doi:10.48550/arXiv.1312.3613

[86] David Wingate, Andreas Stuhlmueller, and Noah Goodman. 2011. Lightweight Implementations of Probabilistic

Programming Languages Via Transformational Compilation. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. JMLRWorkshop and Conference Proceedings, Fort Lauderdale, FL, USA, 770–778.

https://proceedings.mlr.press/v15/wingate11a.html ISSN: 1938-7228.

[87] Lionel Wong, Gabriel Grand, Alexander K. Lew, Noah D. Goodman, Vikash K. Mansinghka, Jacob Andreas, and Joshua B.

Tenenbaum. 2023. From Word Models to World Models: Translating from Natural Language to the Probabilistic

Language of Thought. CoRR abs/2306.12672 (2023). doi:10.48550/arXiv.2306.12672 arXiv:2306.12672 [cs.CL]

[88] Lance Ying, Tan Zhi-Xuan, Lionel Wong, Vikash Mansinghka, and Joshua Tenenbaum. 2024. Grounding Language

about Belief in a Bayesian Theory-of-Mind. doi:10.48550/arXiv.2402.10416 arXiv:2402.10416 [cs].

[89] Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum, and Vikash Mansinghka. 2020. Online Bayesian Goal

Inference for Boundedly Rational Planning Agents. In Advances in Neural Information Processing Systems, Vol. 33.
Curran Associates, Inc., Virtual, 19238–19250. doi:10.48550/arXiv.2006.07532

[90] Guangyao Zhou, Nishad Gothoskar, Lirui Wang, Joshua B. Tenenbaum, Dan Gutfreund, Miguel Lázaro-Gredilla, Dileep

George, and Vikash K. Mansinghka. 2023. 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for Robust

6D Pose Estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Paris,
France, 21559–21569. doi:10.1109/ICCV51070.2023.01977

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 87. Publication date: January 2026.

https://doi.org/10.48550/arXiv.1902.10142
https://doi.org/10.48550/arXiv.1902.10142
https://doi.org/10.48550/arXiv.1902.10142
https://arxiv.org/abs/1902.10142
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1145/3158148
https://doi.org/10.48550/arXiv.2103.00668
https://doi.org/10.1214/aos/1176325750
https://doi.org/10.1145/3064899
https://doi.org/10.48550/arXiv.1701.03757
https://doi.org/10.48550/arXiv.1610.09787
https://arxiv.org/abs/1610.09787
https://doi.org/10.48550/arXiv.1312.3613
https://proceedings.mlr.press/v15/wingate11a.html
https://doi.org/10.48550/arXiv.2306.12672
https://arxiv.org/abs/2306.12672
https://doi.org/10.48550/arXiv.2402.10416
https://doi.org/10.48550/arXiv.2006.07532
https://doi.org/10.1109/ICCV51070.2023.01977

	Abstract
	1 Introduction
	2 Overview
	2.1 Vectorizing Generative Functions with vmap
	2.2 Vectorized Programmable Inference
	2.3 Improving Robustness Using Stochastic Branching
	2.4 Improving Inference Accuracy Using Programmable Inference

	3 Formal Model
	3.1 Syntax of Lambda GEN
	3.2 Denotational Semantics
	3.3 Programmable Inference
	3.4 Vectorization Program Transform
	3.5 Stochastic Branching

	4 Implementation
	4.1 Probabilistic Programming with Programmable Inference
	4.2 Vectorization
	4.3 Stochastic Branching
	4.4 Statically Bounded Loops
	4.5 Execution on GPU

	5 Evaluation
	5.1 Performance Survey Evaluation
	5.2 High-Dimensional Vectorized Inference

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

